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Introduction: 
Some illustrations of polymer processing 
 

A. Extruder and screws 
 

a.  
 

b.  
 

c.  
 
Figure 1 (a) Single screw extruder, (b) standard 3-zone compression screw, (c) from top 

to bottom:  Maillefer phase-separating screw, counter-rotating twin screw, co-
rotating twin screw, and Buss co-kneader. 
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B. Shaping Dies 
 

               
  (a)     (b)    (c) 
 

             
  (d)    (e)    (f) 
 
Figure 2 (a) and (b) coat hanger die, (c) cable coating die, (d) tube die and (e) tube die 

with modern ‘wendelverteiler’, and (f) profile die. 
 

 
C. Continuous processes 

 

(a)  
 

(b)  
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(c)  
 

(d)  
 

(e)     (f)  
 
Figure 3 (a) sheet extrusion with calendering, (b) cable coating, (c) tube extrusion, (d) 

plate extrusion (e) paper coating, and (f) pulltrusion. 
 
 
 

D. Discontinuous processes 
 
 

(a)      (b)      
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(c)       (d)    
 

(e)       (f)    
 

(g)      (h)   
 
Figure 3 (a) injection moulding, (b) closing valve at screw end, (c) container blowing with 

(d) accumulator, (e) and (g) reaction injection moulding, and (f) and (h) mixing 
reactive components. 
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1. Extrusion, some basics 

 
1.1 Pumps based on drag flow 
Pumps can be distinguished based on their working principle, (open) drag flow or (closed) 
positive displacement flow. If a (small) object, like a sphere, can freely move through the 
pump, by tilting or holding it upside down, we deal with a drag pump, if the sphere can not 
move and stays captured, it is a displacement pump. Examples of the last are injection 
needles, bicycle tyre pumps, gear pumps and (their axial extended version:) counter-rotating 
closely intermeshing twin screw extruders. All other pumps are based on drag flow en 
examples include ventilators, turbines, wind mills, blade coaters, two roll mills, calendars, and 
single screw and co-rotating twin screw extruders. A pump is used to force a fluid through a 
resistance. The simplest, 2-dimensional, representation of such a combination is given in 
Figure 1.1. 
 

 
 
Figure 1.1  Two-dimensional drag pump with height H, and length L, running at drag speed 

V (to produce a pressure difference DP), combined with a resistance of height 
h and length l (that consumes the same pressure difference DP to drive the fluid 
through). 

 
Inside the drag pump the combined drag flow and pressure flow results in the effective 
throughput Q, in this 2-dimensional example with dimension [m2/s]. (If you prefer the 3D case of 
a physical throughput Q of [m3/s], please add a width B to both pump and die of B = 1 [m]).  
 

 
1.2 Drag and pressure flow 
Figure 1.2 illustrates how throughput Q is the sum of drag flow ½VH and pressure flow 
(H3/12µ)*DP/L, in three cases with different sign and magnitude of the pressure gradient 
DP/L. The middle example shows that locally the pressure gradient can be negative, such that 
the pressure flow adds to the drag flow to increase the total flow. The bottom example shows 
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what happens if we increase the die resistance such that it is almost closed: the throughput 
diminishes and the fluids start circulating. 
 

Q = ½VH + (H3/12µ)*DP/L      (1.1) 
 
 

 
 

Figure 1.2  Throughput Q [m2/s] equals the sum of the drag flow ½VH and the pressure 
flow (H3/12µ)*DP/L. 

 
__________________________________________________________________________________________ 

Derivation: 
Rather than a complete treatment of the momentum equations, we prefer to use here a 
pretty simplified version. We define: the pressure P [Pa = N/m2], the shear stress t [Pa], the 
viscosity µ [Pa.s] and the length segments dx [m] and dy [m]. A local stress analysis over a 
small area dx.dy illustrates that the pressure gradient dP/dx is balanced by de shear stress 
gradient dt/dy: 
 

dP/dx = dt/dy        (1.2) 
 

   

  
 
Figure 1.3 Stresses acting on a small local area with length dx and height dy, balancing 

the shear stress t (that acts on the length segment dx) and the normal stress P 
(that acts on the height segment dy). 

 
since the horizontal force balance reads  (Px+dx - Px ).dy =  (ty+dy - ty).dx  
while        Px+dx = Px  + (dP/dx).dx 
and      ty+dy =ty  + (dt/dy).dy 
 
Rather than dealing with complex rheology, we prefer to use here the simplest fluid. The 
pumping fluid is Newtonian. It linearly relates the shear stress t to the velocity gradient du/dy, 
with the proportionality constant, the viscosity µ, constant: 
 
  t = µ du/dy        (1.3) 
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Combining Eqs (1.2) and (1.3) yields: 
 
  dP/dx = µ. d2u/dy2  
 
two times integration gives   à     du/dy = A y + C1     à     u = ½ A y2+C1 y + C2 (1.4) 
 
with  A = 1/µ (dP/dx) 
 
Using the two boundary conditions of the flow in the drag pump of Figure (1.1)  
 
  y = 0    u = 0       à     C2 = 0 
  y = H        u = V      à     C1 = (V- ½ A H2)H   (1.5) 
 
yields the velocity profile: 
 

 u = V/H y + ½ A (y2-Hy)      (1.6) 
 
Integration of the velocity over the height gives the throughput: 
 
  Q = ò0H u dy      à     Q = [½ V/H y2 + ½ A (1/3 y3 – ½ H y2)]0

H 

 

  Q = ½VH + (H3/12µ)*DP/L      (1.7) 
__________________________________________________________________________________________ 
 
 

1.3 Pump characteristics 
Eq. (1.1) represents the collection of all operating points of the pump, relating the throughput 
Q to the pressure gradient DP/L. Since the pressure gradient is constant, we can also construct 
Q - DP, the pump characteristic, see Figure (1.4). The intercepts are found by substituting Q = 
0 and DP = 0 in Eq (1.1) : 
 
  Q = 0      à     DP = 6µVL/H2 

   

  DP = 0    à     Q = ½ VH      (1.8) 

 

    
 
Figure 1.4 Pump characteristic. 
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Note that the line extends to the area of negative pressure difference (pressure is consumed, 
DP < 0) and, therefore, negative pressure gradient, DP/L  < 0, see Figure (1.2 middle). 

 
1.4 Influence of operating conditions and geometry on pump 

characteristics 
If the pump is a rotary device, like an extruder, the wall velocity V relates to the rotational 
speed N [rpm]: 
 
  V = p D N/60        (1.9) 
 
with V the wall velocity [m/s], D the screw diameter [m] and N the screw rotational speed 
[rpm]. Both intercepts are proportional to V, see Eq (1.7) and Figure (1.4), therefore changing 
N gives a parallel shift of the pump characteristics, see Figure (1.5):  
 
 

 
 
Figure 1.5 Pump characteristics; influence of screw speed N [rpm]. 
 
Interesting is to investigate the influence of the pump channel height H. From Eq (1.7) and 
Figure (1.4) we learn that the throughput Q (intercept at DP = 0) is proportional to H, while 
the pressure build up DP (intercept Q = 0)  is proportional to 1/H2. Changing H, therefore, 
causes a tilting of the pump characteristic, see Figure (1.6): 
 

 
 
Figure 1.6 Pump characteristics; influence of channel height H [m]. 
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This explains why pumps that require a high throughput against a small pressure difference 
(ventilators) have deep channels, while load bearing spiral groove bearings have very shallow 
channels; this now is explained in more detail in the next Section 1.5.  
 

 
1.5 Combining pump and die, geometry optimization 
The operating point of a pump–resistance combination is found by the intersection point of 
the pump characteristic, see Figures (1.4 – 1.6) and the die characteristic, see Figure (1.7). In 
the die no moving parts are present, and only pressure flow exists. The throughput Q is 
proportional to the pressure drop DP over the die: 
 

Q =  (h3/12µ)*DP/l       (1.10) 
or 

Q =  k/µ*DP   with   k = 1/w   (1.11) 
 
With h is the height and l the length of the die, and k [m2] and w [1/m2] constants that indicate 
the die resistance. The derivation of Eq. (1.10) is identical to the one of the pump 
characteristic, Eqs. (1.2 – 1.7), if one puts V = 0 and realizes that DP over the die is negative. 
 
 

 
 
Figure 1.7 Die characteristics for die’s with a small, intermediate and large resistance W. 
 
Combining pump and die characteristics in one plot, see Figure (1.8), gives the collection of 
working points of the pump-die combination. On the vertical axis we read the throughput–
screw speed characteristic (Q – N), on the horizontal axis the pressure (DP – N). 
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Figure 1.8 Pump and die characteristics and their intersection points, yielding the 

throughput (Q – N) and pressure build up (DP – N) relations of this pump–die 
combination.  

 
Next we optimize the pump with respect to the throughput using as a parameter the pump 
height (2H, H, and ½ H) for different die resistances (w< , w, and w>), see Figure (1.9):  
 
 

 
 
Figure 1.9 Optimization of pump height for different resistances of the die. 
 
Clearly, for bigger dies, with small resistances (w<), the deeper channel is the better (2H) with 
respect to throughput. For intermediate resistance (w), the intermediate height (H) gives the 
best result, while small die’s with a large resistance (w>) require shallow channel heights (½ 
H).   
 
The working points of the pump–die combination can also be expressed in a simple equation: 
Eqs (1.1) and (1.10) give expression for the throughput–pressure drop relations in pump and 
die:  
 

Q = ½VH + (H3/12µ)*DP/L   and Q =  (h3/12µ)*DP/l 
 
The throughput Q in both is the same (integrated continuity equation, expressing 
conservation of mass), therefore: 
 

  ½VH + (H3/12µ)*DP/L  =  (h3/12µ)*DP/l    (1.12) 
 
Solving Eq. (1.12) for the pressure difference yields: 
 
  DP = 6µVH / (H3/L + h3/l)      (1.13) 
 
The pressure differences is proportional to viscosity and screw speed, and depends further 
on the geometry. While substituting Eq. (1.13) in Eq. (1.1) yields for the throughput: 
 
   Q = ½ VH / {1- 1/[1+(h/H)3L/l]}     (1.14) 
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With as result that the throughput depends on screw speed and channel depth, and some 
ratio’s of the details of the geometry of the combination, but most interesting it is 
independent of the viscosity.  And that is exactly why extruders are used in polymer 
processing. The viscosity of the long-chain polymers is huge. In a pump–die combination, 
extruders pump independent of that viscosity. Only the pressure, in front of the die, directly 
depends on the viscosity of the fluid. 
 

 
1.6 Extruders, geometrical considerations 
The drag pump sketched in Figure (1.1) does not directly look like an extruder, but still it 
represents exactly what happens locally in real machines. To understand that, we take a look 
at a simple single screw extruder, with channel height H and pitch angle f. In this extruder, 
we consider the screw stationary, and make the barrel wall to rotate in opposite direction 
with velocity V which relates to the screw speed N accordingly to Eq. (1.9). The velocity V is 
in circumventor direction and can be decomposed into a in-channel component V cosf, and 
a cross-channel component V sinf, see Figure (1.10).  

 

 
 
Figure 1.10 Geometry of a single screw extruder; the screw is thought stationary, the 

barrel rotates in opposite direction with speed V = p D N/60. 
 
The in-channel component V cosf drags the fluid towards against the pressure difference DP  
towards the die. The cross-channel component V sinf makes the fluid rotate in the cross-
section (no transport in cross-channel direction is possible, because of the presence of the 
screw flight; leakage over the flight is neglected here for simplicity), see Figure (1.11). 
Together both velocity components form a spiral motion inside the channel towards the exit 
die.  
 
 

 
 
Figure 1.11 In-channel (top) and cross-channel (bottom) velocity profile, locally inside the 

channel of a single screw extruder. 
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This spiral motion inside the channel is again spiralled, since the channel is spiralled around 
the central screw shaft. Usually in extruder analyses, this last spiral is neglected, by unrolling 
the screw channel from the screw shaft. As a consequence, the screw channel degenerates 
to a straight gutter under an angle f, of height H and width W = p D sinf -e, where D is the 
screw diameter and e represents the flight width, over which an infinite plate, the unrolled 
barrel wall, moves with velocity V. This makes the extruder, Figure (1.10), in the end, 
functionally look like the drag pump in Figure (1.1). 
 
 
Rather often in polymer processing equipment, the channel height H is not constant, but 
changes continuously. This has a direct effect of the local capacity of the drag flow. Given 
continuity of mass and, with constant density, continuity of volume to be transported, this 
results in an interesting interplay of geometry and drag and pressure flows. Pump and 
resistance are fully integrated. As an example, we consider the local cross-sectional flow in 
one arm of a batch mixer or one screw of a co- or counter-rotating twin screw extruder, see 
Figures (1.12) and (1.13).  
 
 

 
 
Figure 1.12 Cross-sectional flow in a batch mixer or a co- or counter-rotating twin screw 

extruder. 
 
 

 
 
Figure 1.13 Drag- and pressure flow in the three locations (top, middle, bottom) as 

indicated in Figure (1.12) (1, 2, and 3, respectively). The throughput Q in all 
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three positions is the same. Continuity of Q determines the magnitude of the 
local pressure gradients.  

 
In the cross-section the pressure on some distance of the screw or kneading flight is the same, 
in case of partially filled systems even P = P0. On position 1, with large H, the drag flow is large, 
and pressure can be build up, (dP/dx > 0). On position 2, the drag flow is just sufficient to 
transport the fluid Q, so there the pressure gradient is zero, (dP/dx = 0).  Finally, on position 
3, the drag flow is too small and must be supported by pressure flow with negative pressure 
gradient to transport Q, (dP/dx < 0). Starting at P = P0 the total pressure profile can be 
sketched, see Figure (1.12).  
 

            
 
Figure 1.14a Integrated drag pump and resistance: (a) two roll mill, (b) calender, and (c) 

blade coating. 
 

 
  
Figure 1.14b Two examples from tribology: (d) Mitchell block bearing, and (e) journal 

bearing. 
 
The same holds for the two-roll mill process, more-roll calendering process, blade coating 
process and, in tribology, the Mitchell block bearing (a kind of triple blade coating process) 
and the full cylindrical journal bearing, see Figures (1.14a,b).  
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When we consider the continuous change in channel height in all these devices consisting of 
a series of sections with parallel flows and a systematic change in height, a complete analysis 
can be done, even with the simplified equations as derived in this chapter, to compute both 
throughput Q as well as maximum pressure P. So analyses can be done quantitatively. You 
can compute how much force you have to put on your knife to produce a thin slice of butter 
on your bread. 
 
Also the conical co-rotating twin screw extruder (with free entrance and exit in the example 
of Figure (1.15)) shows a large drag flow at the feed and, therefore, a large positive pressure 
gradient that gives the ability to build up pressure (Figure (1.13 top)). At some point along the 
screw axis, the channel depth is just sufficient to transport the throughput Q just by drag flow, 
and the pressure gradient is zero leading to a maximum in pressure (Figure (1.13 middle)). 
Finally, at the end of the screw the channels are shallow, the drag flow small and the pressure 
flow must help transporting Q, therefore the pressure gradient is negative ((Figure (1.13 
bottom)), lowering the pressure towards zero.  
 

 
 
Figure 1.15 Integrated drag pump and resistance: The conical corotating twin screw 

extruder has a decreasing channel depth. Therefore at the entrance the drag 
flow is large, somewhere on 2/3 of its length the drag flow is just sufficient to 
transport the throughput Q. At the end of the screws it is by far insufficient, 
and pressure flow must support transport. 

 
 
1.7 Extruders, power use and energy optimization 
Next we investigate how much torque and energy is required to operate an extruder, as an 
example of a pump based on drag flow. In words: 
 
In extruders the torque To equals the total force F on the wall times the radius ½ D. The force 
F equals the (shear)stress-at-the-wall times the total-wall-surface. The energy E equals the 
force times the screw speed (in [revolutions per second]).  
 
Given the Newtonian pumping fluid, Eq (1.3), the wall shear stress equals: 
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  t = µ du/dy|y = H        
 
From Eqs (1.4) and (1.5) we find for the wall shear rate (by substitution y = H): 
 
  du/dy|y = H = DP/2µ . H/L + V/H    
 
The torque To  [Nm] on an extruder with diameter D [m], channel length L [m] and height H 
[m] and axial length Lax [m] is: 
 
  To =  ½ Lax p D2 (µV/H + ½ DP H/L)     (1.15) 
 

and the energy E [J/s] = [Nm/s] per unit of extruder channel width B [m], of an extruder of 
channel length L [m], equals: 
 
  E/B = µV2L / H + ½ DP VH      (1.16) 
 
The throughput Q per unit of extruder channel width B reads, Eq (1.1): 
 
  Q/B = ½VH + (H3/12µ)*DP/L  
 
Introducing the so-called “drossel-ratio” a, which is a number between 0 £ a £ 1 that 
expresses the ratio of pressure flow to drag flow: 
 
  a =  (H3/12µ)*DP/L / ½VH 
 
  a = DPH2 / 6 µ VL        (1.17) 
 
thus also:  DP = 6 µ VL/H . a       (1.18) 
 
the throughput reads: 
 
  Q/B = ½ VH (1-a)        (1.19) 
 
and the energy: 
 
  E/B = µV2L/H (1+3a)       (1.20) 
 
Combining Eqs (1.19) and (1.20) gives the specific energy: 
 
  Esp = E/Q = 2µVL/H2. (1+3a)/(1-a)     (1.21) 
 
The specific energy Esp [J/m3] represents the mechanical energy pumped into the fluid that 
causes it to increase in temperature. Generally, extrusion strategies (screw design and 
operating conditions) aim at keeping the specific energy as low as possible in order to prevent 
overheating and burning of the polymers. 
 
Finally, we define the pump efficiency h [-] as: 
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  h = QDP/E        (1.22) 
 
since a pump that does not pump (Q = 0) is not a pump, while a pump that does not 
generate pressure (DP = 0) is also no pump.  
 
Substituting Eqs. (1.18), (1.19), and (1.20) in (1.22) gives: 
 
  h = 3a (1-a)/(1+3a)       (1.23) 
 
A beautiful, simple, result. 
 
The optimum efficiency can be found by differentiating h with respect to a and setting it 
zero: 
 
  dh /da = 0 
 
 
  dh /da = 3(a+1)(1-3a)/(1+3a)2 =  0 
 
with solutions: a = -1 and a = 1/3       (1.24) 
 
Substituting the real solution a = 1/3 in Eq. (1.23) shows that the maximum efficiency of 
extruders equals: hmax = 1/3. The extruder efficiency as a function of the drossel ratio a is 
shown in Figure (1.16). 
 
 

 
 
Figure 1.16 Extruder efficiency as function of ratio between pressure flow and drag flow.  
 
From the analysis in the Section 1.7, and Section 1.5, Eq. (1.14), we can conclude that 
extruders are viscosity independent pumps with only a moderate efficiency of ~30%. The 
majority of the mechanical energy brought into the system by the motor (~70%) is dissipated 
into heat. This brings us to the next section, that deals with thermal issues. 

 
1.8 Thermal issues 
With a rather simplified approach we will try to illustrate the most important factors 
determining the temperature changes along the extruder axis during pumping. This is 
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relevant since the viscosity of polymers is high, and most of the mechanical energy is 
dissipated into heat.  
 
 
________________________________________________________________________ 
 
A basic heat balance is shown in Figures (1.17) and (1.18): 

 
 

 
 
Figure 1.17 Local heat balance. 
 
With  u   = velocity [m/s] 
  r   = density [kg/m3] 
  c   = heat capacity [J/kg0C] 
  T  = temperature [0C] 
  q” = heat flux density [J/sm2] 
  Dis  = heat dissipation [J/sm3] 
  l   = heat conductivity coefficient [J/sm0C] 
 
we can cast Figure (1.17) in equation form, see Figure (1.18): 
 

 
 
Figure 1.18 Local heat balance. 
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Using T x+dx = Tx + dT/dx . dx and q” y+dy = q”y + dq”/dy . dy the net heat transport and net heat 
conduction (in – out) equal: 
 
  urc dT/dx . dxdy  and  dq”/dy . dxdy 
 
The dissipation Dis works in the total volume, see its dimension, thus in this 2D case it 
equals: 
 
  Dis . dxdy 
 
The sum of all contributions results in heat accumulation in the test volume, here in 2D: 
 
  rc dT/dt . dxdy 
 
such that the total heat balance reads: 
 
  rc dT/dt = urc. dT/dx  + dq”/dy + Dis     (1.25) 
 
In stationary situation, thus after the start up of the pumping process, dT/dt = 0. Furthermore 
in shear flow: Dis = t . du/dy and, by applying Fourier’s law: q” = -l dT/dy with l the heat 
conductivity coefficient, and Newton’s law t = µ . du/dy with µ the viscosity, we reach our 
final result: 
 
  urc dT/dx  = l d2T/dy2 +   µ (du/dy)2     (1.26) 
 
In words: the flow transported with temperature T and speed u will change in temperature 
due to heat conducted into the system and heat dissipated inside the system. The volumetric 
heat capacity of the fluid (rc) in [J/m3. 0C] transforms energy into temperature change. 
 
___________________________________________________________________________ 
 
Two simplified cases can be considered. The first where the system is at rest (u = 0) and the 
second when the system is moving but in equilibrium (dT/dx = 0). 
 
 
First case:   l d2T/dy2 = 0        (1.27) 
 
two times integration gives   à     dT/dy = C1     à     T = C1 y + C2 
 
with boundary conditions         y = 0     à     T = T0 

            y = H     à     T = T1 
 
the linear temperature profile is found: 
 
  (T-T0)/T1-T0) = y/H       (1.28) 
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Second case: l d2T/dy2 +   µ (du/dy)2 = 0 
 
two times integration gives   à     dT/dy = A y + C1     à     T = ½ A y2+C1 y + C2 (1.29) 
 
with  A = µ /l .  (V/H)2 

 
Realizing that the average shear stress in the channel equals:  
 

du/dy = V/H 
 
and using the two boundary conditions  
 
  y = 0    T = T0        
  y = H        T = T1       
 
and the definition of the Brinkman number that reflects the ration of heat dissipation to heat 
conduction: 
 

Br = ½ µV2/l(T1-T0)       (1.30) 
 
 

the temperature profile is found: 
 
  (T-T0)/T1-T0) = y/H + Br . [y/H. (1-y/H) ]    (1.31) 
 
 
 
Both cases are illustrated in Figure (1.19): 
 
 

               
Case 1: Heat conduction only  Case 2: Heat conduction and dissipation 

 
Figure 1.19 Temperature profiles over the channel height. 
 
 
 
In real practice neither of the two cases occur; we move with velocity u and thus dissipation 
is present, but we do not reach equilibrium. Generally, we are underway from the initial feed 
temperature towards the full equilibrium situation of case 2, see Eq. (1.26) and Figure (1.20). 
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Figure 1.20 Illustration of the temperature profile over the channel height as it develops 

along the pump, extruder, axis.  
 
 
Eq. (1.26) is not easy to solve. It can be made dimensionless to reveal the characteristic 
dimensionless numbers that determine the temperature development. One of them we 
already met: the Brinkman number Br. Now we will add the Graetz number Gz: 
 
With dimensionless quantities: 
 
  T*= T/(T1-T0)  y*= y/H  x* = x/L  u*= u/V 
 
The dimensionless form of Eq. (2.26) reads: 
 
  Gz. u* dT*/dx*  = 1. d2T*/dy 2 +   Br. (du*/dy*)2   (1.32) 
 
with  Gz = VH/a . H/L   and   a = l/rc  
 
   Br = ½ µV2/l(T1-T0)       (1.33) 
  
These important dimensionless numbers will be used in Chapter 3, when and where we deal 
with Thermal Scaling of Extruders. 
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2. Modeling of continuous mixers 
 

2.1  Summary 
In many operations in polymer processing, such as polymer blending, devolatilisation, or 
incorporation of fillers in a polymeric matrix, continuous mixers are used; e.g., co-rotating 
twin-screw extruders (zwei schnecken kneter: ZSK), Buss co-kneaders, and Farrel Continuous 
Mixers, FCM. Theoretical analyses of these machines tend to emphasize the flow in complex 
geometries rather than generate results that can be directly used [1-5]. In this chapter1, a 
simple model is developed for the hot melt closely intermeshing co-rotating twin-screw 
extruder, analogous to the analysis of the single-screw extruder carried out in 1922 and 1928 
[6-7], as dealt with in Chapter 1 of this course on polymer melt extrusion and mixing 
processes. With this model, and more specifically with its extension to the complete non-
isothermal, non-Newtonian situation, it is possible to understand the extrusion process and 
to calculate the energy, specific energy, and temperature rise during the process with respect 
not only to the viscosity of the melt, but also to the screw speed end screw geometry: location 
and number of transport elements, kneading sections and blisters, pitch, positive or negative, 
screw clearance, and flight width. To support the theoretical analysis, model experiments 
with a plexiglas-walled twin-screw extruder were performed, in addition to practical 
experiments with melts on small- and large-scale extruders, with very reasonable results. The 
Buss co-kneader has been analysed analogously2.  

 

2.2  Co- versus counter-rotating twin screw extruders 
Twin-screw extruders may be divided into counter- and co-rotating types and into closely, 
partly, and non-intermeshing systems (8-10). Apart from the direction of rotation of the 
screws, they can be subdivided according to their transport mechanism: positive 
displacement or drag flow. This division can be made by investigating whether the channel is 
closed in the axial direction (by flight of the opposite screw) or in fact open (11-13).  

Counter-rotating extruders can be constructed with smaller clearances from a geometrical 
point of view, and the closely intermeshing types are therefore often associated with positive 
displacement. In practice, this does not prove to be very realistic because, apart from the 
typical tetraheder gap between the sides of the adherent screw flights and the necessary 
clearance between barrel and screws, the so-called calender gap between screw root and tip 
of the flight of the opposite screw is often rather large. This gap drags material (with two 
moving walls!) backward into the previous C-shaped chamber. Without this gap, plastification 
(or gelation) of, for instance, poly(vinylchloride) (PVC) would be impossible. PVC is rather 

                                                        
1 Based on, and see for details: H.E.H. Meijer and P.H.M. Elemans, The Modeling of Continuous Mixers. Part 1, 
The Corotating Twin-Screw Extruder, Pol. Eng. Sci., 28, 5 (1988), 275 – 290.  
2 P.H.M. Elemans and H.E.H. Meijer, On the Modeling of Continuous Mixers. Part 2, The Cokneader, Pol. Eng. Sci., 
30, 15 (1990), 893 – 904. 
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typically processed with this type of extruders because of its poor thermal stability combined 
with its very high viscosity.  Reason for the high viscosity is not so much the polymer’s 
molecular weight, but more caused by that the remaining ~1% crystallinity –the tiny crystals 
melt at around 260 0C where PVC degrades- act at the processing temperature of 190 0C as 
physical crosslink points of a network; therefore PVC is basically processed as a rubber. 
Moreover, given the high viscosity and poor thermal stability it is not allowed to heavily shear 
PVC and, therefore, external and internal plasticers are added to the compound, yielding poor 
transport mechanism in drag extruders. The counter-rotating extruder is treated in detail in 
Refs. 14 and 15 with the final result that the pumping characteristic, throughput versus 
pressure build-up, is rather easily obtained as the number of C-shaped chambers, becoming 
free per unit of time, multiplied by the volume of one chamber, minus the sum of all leakage 
flows. Even with small clearances, the backflow because of the leakage is in the order of half 
the positive displacement (depending on the pressure at the die).  

Apart from some non-intermeshing types which are sometimes used for devolatilization [16] 
counter-rotating twin-screw extruders can in principle, given the importance of the calender 
gap, be treated as a continuous two- roll mill process. The analysis of the milling process can 
be found in any good textbook on polymer processing (17- 19).  

Analogously, the FCM, Farrel Continuous Mixer, can be treated as an internal mixer fed by a 
non-intermeshing counter-rotating twin-screw extruder. Although numerous papers have 
been published on these mixers, especially with respect to rubber compounding, only a few 
are significant. Examples are the work by Noordermeer (20) whose emphasis is on the rubber, 
following the work originally done by Tokita and White (21,22), and the work by Manas et al. 
(23) who developed the first really interesting model on the dispersive mixing of carbon black 
in a rubber matrix, an analysis that can be easily extended to other processing equipment or 
to the mixing of polymer blends (24, 25). Further discussion of this subject is not in the scope 
of this chapter, which is confined to the modeling of the corotating twin-screw extruder.  

In practice, co-rotating extruders also can be constructed with broad flights, as is sometimes 
done in the feed section, to solve problems with difficult-to-transport powders. However, 
their tetraheder gap is again from the geometrical point of view always much larger than the 
one in counter-rotating extruders. Moreover, they are constructed with closely intermeshing 
screws to promote the self-wiping and, as a consequence, the flights leave a completely open 
8-shaped chamber. Therefore, the transport mechanism is drag flow. The analysis of the co-
rotating twin-screw extruder can be found in Ref. 4, but as in Refs. 14 and 15, too much effort 
is paid to a detailed treatment of the complex geometry and the reader becomes easily lost. 
Rauwendaal (14) pays some attention to the modeling of co-rotating twin-screw extruders, 
but the analysis is incomplete and, therefore, of little practical use. Of course, the more 
important extruder manufacturers have developed their own computer programs to predict 
the performance of their extruders dependent on screw design, and to scale up the results 
from laboratory measurements to production size (26). But for reasons that are easily under- 
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stood, they do not always present their know-how to the competitors in the open literature.  

Here, the co-rotating twin-screw extruder will be dealt with as a single-screw extruder using 
the theories developed in 1922 and 1928, as derived in Chapter 1. This is allowed with respect 
to the transport characteristics of the melt-filled sections because of the completely open 
channel.  

 

2.3 Screw geometries 
Different screw elements exist: single-, double-, or triple-flighted screws with different pitch, 
even with negative pitch, mixing and kneading elements. Screw configuration is extremely 
flexible, one of the major advantages of this kind of extruders, and can be fitted to the job. At 
present, mostly double-flighted screw elements are used because of the larger useful volume. 
Single-flighted screws are less popular. because mixing increases with the number of flights. 
Figure (2.1) shows 8 examples of different screw configurations that all have been used in 
different trials and applications in different laboratories. 

 

   

Figure 2.1 Eight different examples of the flexible screw design in co-rotating twin-screw 
extruders. 
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Although the maximum applicable torque on the screws has been recently (we talk 1988) 
doubled in the new series of extruders, the maximum torque is still relatively low in 
comparison with single- screw extruders and (conical) counter-rotating twin-screw extruders. 
This is inherent to the flexible screw design and self-wiping action.  

Attention will be focused on the hot melt extruder, which in practice is used for devolatili- 
zation or is present after the melting section in each compounding extruder. Solids conveying, 
transition, and melting sections are difficult to analyze because no distinguished melting 
mechanism can be recognized as in single- screw extruders (27-30). Rather, a mixture of solids 
and melt exists as in the dissipative mix melting mechanism (31). Nevertheless, incorporation 
of the modeling of the melting section will be important because during compounding most 
of the limited torque is used in this stage of the process and sometimes even an important 
part of the dispersive mixing is already achieved here, because of the high viscosity (low 
temperature) of this mixture (32).  

The most elementary screw geometry is given in Figure (2.2) and consists of a sequence of 
transport elements with positive pitch combined with an element with negative pitch. The 
principle of the analysis will be explained using this geometry. In the screw segment of Figure 
(2.2), three functional parts can be distinguished: part a, partially filled having a degree of fill 
f (0<f<1); part b, completely filled, pressure generating; and part c , completely filled, pressure 
consuming.  

 

 

Figure 2.2 Elementary screw geometry of under-fed co-rotating twin-screw extruders. The 
counter-transporting element ‘c’ is used to fill the screw in element ‘b’, in order 
to create residence time. 

In principle, every screw (some examples are given schematically in Figure (2.1)) can be 
thought to consist of parts a, b, and c. The reason is that a primary task of co-rotating twin-
screw extruders is either to remove volatiles from the melt (water, solvents, monomers) or 
to add fillers (glass, chalk, talc, mica) via openings in the barrel. As a consequence, all co-
rotating extruders must be underfed, which means that the throughput locally at least in the 
open barrel sections is only part of the maximum theoretical throughput. (Correct metering 
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of the individual components is often stated to be 80% of the compounding job). 
Subsequently the screws must be locally complete filled to allow operations, like melting and 
mixing, that require residence time. If partly filled screws would only consist of transporting 
elements, the residence time would be very short. Think about transport of a sphere in an 
empty screw. In every revolution of the screw, it transfers a distance D in axial direction. 
(Reason is that screws are generally “square”, meaning that the pitch angle f is chosen such 
that tanf  = 1/p, see Figure (2.3)). In a screw rotating at 120 [rpm] the sphere travels an axial 
distance of 120D per minute. If the screw has a length of L/D = 20, the sphere needs 1/6 of a 
minute, thus 10 seconds, to reach the exit. This is the order of magnitude of the residence 
time if no pressure consuming screw elements would be present. In complete filled sections 
of the screw, with volume Vf = Lf WH [m3] and metered throughput Q [m3/s], the residence 
time Tres [s] equals:  

Tres = Vf / Q       (2.1)  

which is generally considerably longer than 10 seconds and depends on the throuphput 
metered and the screw geometry chosen. In conclusion: In continuous co-rotating twin-
extrusion blisters, kneading blocks and counter-transporting elements are required to fill the 
screw to create residence time. 

                                  

Figure 2.3 The unrolled screw channel. In square screws the pitch equals the diameter. 

 
2.4 Analysis of simplified geometry 
(Local) pressure gradients (following from throughput compared with theoretically maximum 
throughput) and lengths determine the relative dimensions of sections a, b and c. The screw 
is thought to be stationary and the barrel rotating in opposite direction as usual. Furthermore, 
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curvatures are neglected by either looking very locally or by unrolling the screw channel. In 
first approximation, the screw channel is thought to have a rectangular cross- sectional shape, 
with average height H and width W. The barrel wall moves with a velocity V = p DN/60 over 
the screw channel under an angle f and drags the fluid towards the die. The analysis of the 
situation is completely analogous to the one treated in Chapter 1, with a drag flow Qd = 
½VHW, and the only difference is that in continuous twin-screw extrusion the throughput Q 
is metered and prescribed to be only a fraction f of the maximum drag flow capacity:  

  Q = fQd         (2.2) 

With f typically 0.5, see Figure (2.4): 

 
 
Figure 2.3 3D velocity profiles in sections a, b, and c of the extruder, see Figure (2.2). In all 

three sections, the throughput Q is the same and equals the metered 
throughput. 

 
Always the (same) throughput Q is transported by drag Qd and pressure Qp flow: 
 
  Q = Qd + Qp        (2.3) 
 
 
The filled parts b build up pressure and the pressure flow directs in negative transport 
direction and equals: 
 
  Qp = -(1-f) Qd        (2.4) 
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while in parts c, where the drag flow transports in negative direction, Qd = -½VHW, the 
pressure flow, now in positive direction, must counteract this: 
 

Qp = (1+f) Qd        (2.5) 
 

The analysis follows that in Chapter 1. For instance with Eq. (1.1), Eqs (2.2) and (2.3) combined 
read: 
 

f ½VHW = ½VHW + (WH3/12µ)*dP/dz    (2.6) 
 

with z the channel direction, from which directly the local pressure gradients dP/dz can be 
determined. It follows: 
 
  dP/dzb / dP/dzc = -(1+f)/(1-f)      (2.7) 
 
Given (i) the linear pressure gradients when working with Newtonian fluids, dP/dzb = DP/Lb 
and dP/dzc = DP/Lc , (ii) the total extruder length L and (iii) -by screw design- the local relative 
length of the negative transport section c, lc = Lc /L, the local lengths read: 
 
  la= 1-2/(1-f) lc    lb = (1+f)/(1-f) lc lc =  lc   (2.8) 
 
In conclusion: the working of the most simple version of a continuous co-rotating twin screw 
extruder, like shown in Figure (2.2), is uniquely determined by the screw design in terms of 
the relative length lc of the counter transporting elements parts c, and the operating 
conditions in the form of the metered throughput that determines the degree of fill f. 
 
Example: If f = 0.3 and lc =  0.2, then la =   0.43 and lb = 0.37. 
 

 
2.5 Analysis of complex geometries 
Apart from the counter-transporting, so-called ‘left’ elements ‘c’, different kind of kneading 
blocks are used in co-rotating twin-screw extrusion. Interestingly, the cross-sections of all 
screw elements used are identical, and prescribed by the action of self-whipening where one 
screw during passage cleans the surface of the other. As a consequence, their cross-sectional 
mixing is identical. Terms like ‘kneading blocks’ are therefore somewhat misleading, since 
these elements do not so much more ‘kneading’ than transport elements but rather, as 
understood from the previous section, 2.4, they are present to fill the screws and create 
residence time. Basically kneading blocks consist of a number of identical discs, that are 
staggered such that their tops show a positive pitch (of 450), a neutral pitch (no pitch angle) 
or a negative pitch (of -450), see Figure 2.4. Therefore, they are called positive, neutral or 
negative kneading blocks. Sometimes in stead of ‘positive’ and ‘negative’, the terms ‘right’ 
and ‘left’ screw elements and kneading blocks are used, but this could be confusing since 
some extruder manufacturers prefer to let the screws rotate (as seen from the back) clock-
wise rather than the standard counter clock wise, see Figure (2.1). Kneading blocks basically 
only (and only slightly) differ in the direction of their drag flow, that is overall pretty weak 
because of the presence of all large leakage gaps in between the discs. 
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a.                    b.                        c. 

 
Figure 2.4 Positive (so-called ‘right’) (a), neutral (b) and negative  (so-called ‘left’) (c) 

kneading blocks. 

 
The analysis of complex screws based on combinations of these screw elements follows the 
same line as demonstrated in Chapter 1: we compute drag flow and pressure flow and sum 
up to obtain the throughput Q that is constant throughout the extruder. We thus construct 
the pump characteristics of all different elements. First Figure (2.5) shows the pump 
characteristics (here in throughput Q versus the linear pressure gradient DP/L) of (1) a 
standard transporting screw element, a and b in (Figure 2.2), and (2) a counter-transporting 
screw element, c in (Figure 2.2).   

 

 
 
Figure 2.5 Pump characteristics in terms of throughput Q versus pressure gradient DP/L 

of (1) transporting screw element and (2) counter-transporting negative (left) 
screw element 

 
Next Figure (2.6) adds the pump characteristics of a (3) positive-transporting, (4) neutral, and 
(5) negative-transporting kneading block. As is clear from these characteristics, the presence 
of large leakage flows in the big gaps between the staggered discs that consitute the kneading 
block make the pump characteristics very steep and only little pressure can be build up, or is 
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used. Apart from that, the influence of the precise staggering (positive, neutral of negative) 
is only marginal. 
 
 

 
 

Figure 2.6 Pump characteristics of (1) transporting screw element, (2) counter-
transporting screw element (3) transporting kneading block, (4) neutral 
kneading block, and (5) counter-transporting kneading block 

 
Next we find the intersections of all pump characteristics with the horizontal line of constant, 
metered throughput Q in order to obtain the local pressure gradients DP/L. They are required 
to predict filled-sections in e.g. the standard compounding screw of Figure (2.8). Of course Q 
< Qd  since (i) for solids-fed extruders the density of the granular feedstock is lower that that 
of the melt, (ii) when melt is present and transported,  we need partially filled channels at the 
second feed to make room for the fillers, and (iii) the same holds for the third barrel opening 
where room for gas and foaming is required.  
 
 

 
 

Figure 2.7 Given the constant metered throughput Q < Qd  the local pressure gradients are 
found (red arrows) by intersecting the line Q is constant (red dashed line) with 
the 5 different pump characteristics. 
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From the red dashed line and the red arrows in Figure (2.7) we learn that for all kneading 
blocks the pressure gradients are close to zero. For transporting elements, we find the familiar 
value of a positive pressure gradient, for counter-transporting, negative, ‘left’, elements, 
large negative pressure gradients are required to overcome the drag in negative direction and 
to transport Q towards the die exit.  
 
With the known pressure gradients, and the known local lengths of the different screw 
element sections, the pressure profile can be obtained, working form the right (P=0 at the die 
exit, and P=0 in the sections of the screw where holes in the barrel allow transport in- or out) 
to the left. Basically the procedure results in the, originally unknown, lengths ‘a’ and ‘b’ (see 
Figure (2.2) of the screw. Operating is safe as long as lengths ‘a’ are positive. 
 
 

 
 
Figure 2.8 An standard compounding screw, with metered throughput left, melting 

section, addition of filler, mixing section and degassing section before the die 
exit. With the local pressure gradients just determined, the filled parts of the 
extruder can be determined graphically, working from right to left. 
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Figure 2.9 Like Figure (2.8) illustrating in a different screw configuration the dependence 
of filled lengths on the metered throughput Q. 

 
Figure (2.9) illustrates that filled length of the screw strongly depend on the dosed throughput 
Q, of course relative to the maximum drag flow capacity Qd that depends directly on e.g. screw 
speed N. 

 
 
2.6 Torque, energy and specific energy 
Since all pressure gradients are obtained, the local velocity profiles are known and, by 
differentiation and substituting y = H, the local wall shear stresses. Since the length of all 
screw parts is also obtained, the force and torque on the extruder barrel wall are directly 
computed. Given the screw speed, the energy required to run the extruder is known, and with 
the metered throughput we find the specific energy, Esp. Since we know that extruders are 
viscosity independent pumps with a low efficiency, a large part of the driving energy is 
dissipated into heat. This causes the pumping fluid, usually a polymer melt, to increase in 
temperature. Consequently, the viscosity lowers, as does the energy and specific energy 
required. It is outside the scope of this introductory course to deal with all the details, that 
can be found in H.E.H. Meijer and P.H.M. Elemans, The Modeling of Continuous Mixers. Part 
1, The Corotating Twin-Screw Extruder, Pol. Eng. Sci., 28, 5 (1988), 275 – 290.  
 
Here we only summarize the results, see Figures (2.10) and (2.11). 
 
 

 
 
Figure 2.10 Specific energy Esp as a function of metered throughput Q. Parameter is the 
screw speed N. Lines of constant degree of fill, f, are indicated with dashed lines. Isothermal 
case with a Newtonian fluid. 
 
The specific energy that if it is too high might overheat the polymer melt decreases with 
dcreasing screw speed and increasing throughput. Basically the degree of fill, f, should be 
maximized. In practise this means that the extruder should run at maximum available torque.   
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Figure 2.11 As Figure (2.10): Specific energy Esp as a function of metered throughput Q, now 

for the non-isothermal case using a powerlaw model.  
 
The results of the more precise non-isothermal, powerlaw calculations, Figure (2.11), are 
qualitatively similar to those of the isothermal Newtonian case. The physical feed back: higher 
specific energy -> higher melt temperature -> lower viscosity -> lower specific energy more 
or less auto-regulates the system. All lines for different screw speeds lower and approach 
each other, the overall conclusion that maximizing the degree of fill, f, thus maximizing the 
torque, for low specific energy remains valid.
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3. Scaling of continuous mixers    
     

3.1 Definition of the scaling problem 
Once experiments on small, laboratory, scale have been successful, the next question arises: 
how do we translate the results to the macro scale, and what do we precisely need in terms 
of equipment size, screw design and operating conditions. In order to answer these questions, 
simple scaling rules have been designed3, see also4. They distinguish different scaling 
strategies that give different answers. The most straightforward strategy is geometrical 
scaling, that is intuitively also the most direct one, and that keeps mixing in small and large 
machines identical. But this is only true if the extruders, on both scales, work fully adiabatic, 
i.e. no heat exchange with the barrel wall and surroundings exists. Usually this is not the case, 
and differences in heat exchange cause the temperature development to be not the same. 
The main cause of the problem is that the content of the screw scales with the diameter to 
the power 3, while the barrel surface scales with the power 2. If thermal issues are important, 
e.g. once heat exchange via the barrel wall is required in the melting process or when the 
melt need to be cooled in order to avoid to high melt temperatures, thermal scaling is 
required. 
 

3.2  Governing equations 
We first summarize the relevant equations derived so far in our modelling of extruders, see 
Chapters 1 and 2, the set of Equations (3.1). 
 
___________________________________________________________________________ 

 
Throughput    Q = ½VH + (H3/12µ)*DP/L 
Newtonian fluid   t = µ du/dy 
Wall velocity    V = p D N/60 
Pressure flow in die   Q =  (h3/12µ)*DP/l 
Torque     To =  ½ Lax p D2 (µV/H + ½ DP H/L) 
Drossel ratio    a = DPH2 / 6 µ VL 
Channel width    B = p D sinf 
Throughput per channel width Q/B = ½ VH (1-a) 
Energy per channel width   E/B = µV2L/H (1+3a) 
Specific energy   Esp = E/Q = 2µVL/H2. (1+3a)/(1-a) 
Energy equation:   urc dT/dx  = l d2T/dy2 +   µ (du/dy)2 

Dimensionless energy equation Gz. u* dT*/dx*  = 1. d2T*/dy 2 +   Br. (du*/dy*)2 

Dimensionless Graetz number Gz = VH/a . H/L and a = l/rc 
Dimensionless Brinkman number  Br = ½ µV2/l(T1-T0) 

___________________________________________________________________________ 

                                                        
3 P.H.M. Elemans, H.E.H. Meijer, Scale-up of the Mixing Process in Continuous Mixers, in Mixing and 
Compounding of Polymers. Theory and Practice. Eds. I. Manas Zloczower and Z. Tadmor. Hanser Publisher New 
York. Chapter 13, pp 457-470 (1993); (only in first edition). 
4 H.E.H. Meijer and P.H.M. Elemans, The Modeling of Continuous Mixers. Part 1, The Corotating Twin-Screw 
Extruder, Pol. Eng. Sci., 28, 5 (1988), 275 – 290. 
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Next we greatly simplify this set, realizing that we only need to mutually compare results on 
the large, diameter D, extruder with those obtained on the small laboratory one with D0. 
Therefore, only ratio’s of the two have to be compared with the advantage that all constants 
drop off. First we define the ratio’s of the relevant parameters on the large ( no index) and 
the small (index 0) extruder, like N/N0 for the rotational screw speed ratio,  and express them 
as a power of the ratio of their diameters, as the size determining parameter D/D0; set of 
Equations (3.2): 
 
___________________________________________________________________________ 

 
Screw speed   N/N0   =  (D/D0)n 

Channel depth   H/H0   =  (D/D0)h 
Screw length   L/L0   =  (D/D0)l 
Throughput   Q/Q0   =  (D/D0)q 
Mean residence time  t/t0   =  (D/D0)t  
Shear rate   gdot/gdot 0  =  (D/D0)g 
Total shear   gtot /gtot 0  =  (D/D0)gt 
 
Torque    To/To 0   =  (D/D0)t 
Energy    E/E0   =  (D/D0)e  
Specific energy  Esp/Esp 0  =  (D/D0)es 

Graetz number  Gz/Gz 0  =  (D/D0)gz 
Brinkman number  Br/Br 0   =  (D/D0)br 

P* number   P*/P*
 0   =  (D/D0)p* 

B* number   B*/B*
 0   =  (D/D0)b* 

___________________________________________________________________________ 
 

 
Next define the ratio’s for throughput, shear rate, total shear, torque, energy, and specific 
energy. As an example for the throughput we find in Eq. (3.1): 
 

Q = ½ VH (1-a)B, with V = p D N/60 and B = p D sinf    (3.3) 
 

Thus  
 

Q = ½ p2 D2 N H (1-a) sinf / 60      (3.4) 
 
We decide to keep the pitch angle of the screw f and the ratio a, the pressure flow to drag 
flow, the same in both extruders, thus f = f0  and a = a0. Then: 
 
 Q/Q0 = D2 N H / D0

2 N0 H0       (3.5) 
 
Thus: 
 
 Q/Q0 =  (D/D0)2 . (N/N0) . (H/H0)      (3.6) 
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With help of Eq. (3.2) we rewrite Eq. (3.6) to obtain: 
 
 (D/D0)q

 = (D/D0)2. (D/D0)n. (D/D0)h 
 
From which the relation between the power coefficients is found: 
 
 q = 2 + n + h         (3.7) 
 
 
 
Repeating the same procedure for the other expressions from Eq. (3.1), all relations between 
all different power coefficients are found, set of Equations (3.8): 
 
___________________________________________________________________________ 
  

throughput     q =  2 + n + h  
mean residence time   t  =  h + 1 + l - q  =  l - 1 - n 
shear rate    g =  n - h + 1   
total shear    gt =  g + t  =  l - h  
torque     to  =  3 + n + l - h  
energy     e  =  3 + 2n + l - h  
specific energy    es =  e - q  = 1 + n + l -2h 

___________________________________________________________________________ 
 
The temperature development in extruders is obtained from solving the energy equation with 
the proper boundary conditions. It was given in Eq. (3.1) in its dimensionless form: 
 
 Gz. u* dT*/dx*  = 1. d2T*/dy 2 +   Br. (du*/dy*)2    (3.9) 
 
The solution of the dimensionless equation Eq. (3.9) is always the same when using the same 
dimensionless numbers Gz and Br and boundary conditions. With: 
 
 Gz = VH/a . H/L and a = l/rc 
 

Br = ½ µV2/l(T1-T0) 
 
we write: 
 
 Gz/Gz0 = (VH2/L)/(V0H0

2/L0)       (3.10a) 
 
 Br/Br0 = V2/V0

2         (3.10b) 
 
which, with V = p D N/60  and Eq. (3.2), yields: 
 
 (D/D0)gz = (D/D0)(D/D0)n(D/D0)2h(D/D0)-l      (3.11a) 
  

(D/D0)br= (D/D0)2(D/D0)2n       (3.11b) 



 38 

 
thus 
 
___________________________________________________________________________ 
  

Graetz     gz  =  1 + n + 2h - l  (3.12a) 
 Brinkman    br  =  2 + 2n   (3.12b) 
___________________________________________________________________________ 
 
The energy equation (3.9) is valid for laminar flows as they occur in single screw and counter-
rotating twin screw extruders. Given the excellent mixing in co-rotating twin-screw extruders, 
where every time that a screw wipes the other, a reorientation of the melt occurs resulting in 
exponential rather than linear mixing, a better heat balance is the one shown in Figure (3.1). 
 
 

 
 
Figure 3.1 Local heat balance in well mixed flows. 
     
Elaborating the heat balance results in the energy equation that is more simple since inside 
the flow because of good mixing we do not have to solve heat conduction and just can take 
Ta*as the average dimensionless temperature and ua* as the average dimensionless velocity: 
 
 P*. ua* dTa*/dx*  = Ta* +   B*. (dua*/dy*)2     (3.9) 
 
With for the P* and B* numbers: 
 
 P* = 1/<a>		VH/ L         (3.10a) 
 

B* = 1/<a>		µV2/	H(T1-T0)       (3.10b) 
 
With <a>	the	heat	transfer	coefficient.	Defining its dimensionless form, the Nusselt number:  
 
 Nu = <a>		L/l,         (3.11) 
 
the Peclet number Pe = VH/a, and aspect ratio As = H/L, we find: 
 
 P* = Pe/Nu = Gz/Nu. As       (3.12a) 
  

B* = Br. As /Nu         (3.12b) 
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For scaling from extruder D0 to D we keep the material paramers a = l/rc and the heat 
transfer conditions, Nusselt number, constant, and thus can write: 
 
 P*/P*

0 = (VH/L)/(V0H0/L0)       (3.13a) 
 
 B*/B*

0 = V2/V0
2         (3.13b) 

 
which, with V = p D N/60,  yields: 
 
 (D/D0)p* = (D/D0)(D/D0)n(D/D0)h(D/D0)-l     (3.14a) 
  

(D/D0)b*= (D/D0)2(D/D0)2n       (3.14b) 
 

thus 
 
___________________________________________________________________________ 
  

P*     p*  =  1 + n + h -l   (3.15a) 
 B*     b*  =  2 + 2n - h  (3.15b) 
___________________________________________________________________________ 
 
With this result, all relations between the power coefficients of all relevant quantities are 
established. We can start scaling, following the two different strategies: geometrical and 
thermal scaling. 
 

 
3.3  Geometrical scaling 
Geometrical scaling is the most intuitive way of scaling. All geometrical parameters scale with 
the diameter. Thus with the second 2 lines of Eq. (3.2): 
 
Channel depth   H/H0   =  (D/D0)h 
Screw length   L/L0   =  (D/D0)l 
 
This scaling reads:  
 
 h =1          (3.16a) 

l = 1          (3.16b) 
 
and, if we chose to operate both extruders with the same rotational speed, line 1 of Eq. (3.2): 
 
 n = o          (3.16c) 
 
That is all.  
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And it demonstrates the ease of use of scaling rules, since substituting Eq. (3.16) in Eq. (3.2) 
yields the power coefficients of all other parameters, set of Equations (3.17):  
 
___________________________________________________________________________ 

 
screw speed    n =  0 
extruder length   l  =  1 
channel depth    h  =  1 
 
throughput:     q =  3  
mean residence time   t  =  0 
shear rate    g =  0   
total shear    gt =  0  
torque     to  =  3  
energy     e  =  3  
specific energy    es =  0 
___________________________________________________________________________
        
For example, in a two-times larger extruder D/D0 = 2 running at the same screw speed, 
diameter, channel depth and extruder length are twice as large. The volume is 23 thus eight 
times larger to give an eight times higher throughput, that requires the torque and driving 
energy (motor) to be also eight times larger. Mixing is identical, since shear rate, residence 
time, total shear and specific energy are the same in both extruders. 
 
Eq. (3.17) explains why geometrical scaling is popular. However, substitution of Eq. (3.16) in 
Eq. (3.12) and Eq. (3.15) learns, for both laminar and well-mixed flows, that the power 
coefficients that determine the temperature development are not zero: set of Equations 
(3.18): 
__________________________________________________________________________ 
 
laminar flows: 
Graetz:     gz  =  1  
Brinkman    br  =  2  
 
well-mixed flows: 
P*:     p*  =  1 
B*:     b*  =  1  
___________________________________________________________________________ 

 
The temperature development is therefore clearly different. This is due to the fact the the 
barrel surface, p DL, scales with D2 while volume (and throughput and energy, thus 
dissipation) with D3. Small extruders tend to have relatively more heat exchanging barrel 
surface. So the barrel heat source during melting and heat sink during melt cooling are much 
more pronounced. Differences in temperature development may cause huge problems for 
example when the melting capacity is limited, like in grooved feed section plastificating single 
screw extruders, or when thermal degradation threatens the polymer quality in melt fed 
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degassing extruders in polymerization plants. In these cases, therefore, thermal scaling must 
be considered that, however, does not keep the mixing the same.  

 
 
3.4 Thermal scaling 
In order to arrive at the same temperature development in laminar flows, as present in 
plasticating single screw extruders and counter-rotating twin screw extruders, or in well-
mixed flows, such as in the co-rotating twin-screw extruders, the dimensionless numbers Gz, 
Br, P* and B*, should stay the same, set of Equations (3.19):  
___________________________________________________________________________ 
 
laminar flows: 
Graetz:     gz  =  0  
Brinkman    br  =  0  
 
well-mixed flows: 
P*:     p*  =  0 
B*:     b*  =  0  
___________________________________________________________________________ 
 

 
 
3.4a Thermal scaling for laminar flows 
First we consider laminar flows. Combining Eqs. (3.19) with (3.12b) yields: 
 
screw speed    n = -1 
 
The screw speed is disproportional to the diameter ratio; thus a twice as big extruder should 
run at only half the speed (the circumventor velocity is the same). This has huge 
consequences. Furthermore, we chose the extruder length proportional to the diameter: 
 
     l = 1 
 
and from n = -1, l = 1, combined with Eqs. (3.19) and (3.12a) we get: 
 
     h = 0.5 
 
The channel depth of a twice as big extruder should be only Ö2 times as large.  Combining all 
results yields for thermal scaling in laminar flows, set of Equations (3.20): 
 
___________________________________________________________________________ 

 
Graetz:     gz  =  0  
Brinkman    br  =  0  



 42 

 
screw speed    n =  - 1 
extruder length   l  =  1 
channel depth    h  =  0.5 
 
throughput:     q =  1.5  
mean residence time   t  =  1 
shear rate    g =  - 0.5   
total shear    gt =  0.5  
torque     to  =  2.5  
energy     e  =  1.5  
specific energy    es =  0.5 
___________________________________________________________________________ 

 
These results are indeed applied in practice in the scaling of plasticating single-screw 
extruders foreseen with very efficient groove-bored feed sections that make the melting 
capacity the limiting factor.  
 
The relatively low throughput on larger machines, q = 1.5, is also interesting from an economic 
price-performance point of view. An inspection of sales prices of single screw extruders learns 
that for the power coefficient in the price ratio: pr/pr 0 = (D/D0)pr, we find: 
 
price     pr = 1.7    (3.21) 

 
which implies that, to increase throughput, a row of smaller extruders is cheaper than one 
bigger extruder. (The disadvantage is, however, that all auxiliary equipment must also be 
multiplied, which probably is more expensive). 

 
3.4b Thermal scaling for well-mixed flows 
Next we consider well-mixed flows. Combining Eqs. (3.19) with (3.15a) and  (3.15b) yields: 
 

1 + n + h - l = 0  and  2 + 2n - h = 0 
 

Now we can choose: geometrical scaling of the extruder length, l = 1, or of the channel depth, 
h = 1. The last is practice in co-rotating twin-screw extruders, because of the self-whipening 
action required. 
 

3.4b1 First choice: l = 1   
with     l = 1 
we find from Eq. (3.15b)  n = - h 
and from Eq. (3.15a)   h = 2/3  thus   n = - 2/3 
 
Combining all results yields for thermal scaling in well-mixed flows, set of Equations (3.22): 
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___________________________________________________________________________ 

 
P*     p*  =  0  
B*     b*  =  0  
 
screw speed    n =  - 2/3 
extruder length   l  =  1 
channel depth    h  =  2/3 
 
throughput:     q =  2  
mean residence time   t  =  2/3 
shear rate    g =  - 1/3   
total shear    gt =  1/3  
torque     to  =  2 +2/3  
energy     e  =  2  
specific energy    es =  0 
___________________________________________________________________________ 
 

3.4b2 Second choice: h = 1  
This is the case in co-rotating self-whiping twin-screw extruders. 
 
With     h = 1 
we find from Eq. (3.15b)  n = - 0.5 
and from Eq. (3.15a)   l = 1.5 
 
The screw speed is disproportional to the square root of the diameter ratio; the length on 
larger extruders is more than proportional larger. This also holds for the local length, like the 
size of kneading blocks. Combining all results yields for thermal scaling in well-mixed flows, 
set of Equations (3.23): 
 
___________________________________________________________________________ 

P*     p*  =  0  
B*     b*  =  0  
 
screw speed    n =  - 0.5 
extruder length   l  =  1.5 
channel depth    h  =  1 
 
throughput:     q =  2.5  
mean residence time   t  =  1 
shear rate    g =  - 0.5   
total shear    gt =  0.5  
torque     to  =  3  
energy     e  =  2.5  
specific energy    es =  0 
___________________________________________________________________________ 
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This final set of scale up rules shows, especially by the power coefficient for the throughput: 
q = 2.5, that twin screw extruders scale up well, but that for similar temperature development 
in both extruders, p* = b* = 0, the screw speed on the larger extruder should be somewhat 
lower, n = - 0.5 , which is OK for screw wear, further that all kneading blocks and counter-
transporting elements should be relatively longer, l = 1.5, and finally that shear rate is 
somewhat lower, the residence time longer, resulting in more total shear. 
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4. Mixing5,6 
 

4.1 Distributive versus dispersive mixing 
In polymer technology, two main routes can be discerned for the attainment of specific 
material properties that homopolymers often cannot accomplish (e.g., a high notched impact 
strength combined with a reasonable modulus and continuous use temperature necessary 
for engineering applications of polymers). One way is to blend or modify polymers in the 
reactor (in situ), as in the case of (block) copolymerization of, for example, polyurethanes 
(PUR), styrene-butadiene-styrene (SBS) block copolymers, reactor modified polypropylene 
(RMPP), high impact polystyrene (HIPS), and acrylonitrile-butadiene-styrene (ABS). The other 
way is the (extrusion) melt blending of different existing (homo)polymers. The versatility of 
melt blending techniques offers some advantages over the more traditional reactor 
modification. In addition, in reactive extrusion, in situ blending is promoted by specific 
reactions at the interface. Since most polymer combinations of interest are 
thermodynamically immiscible on a molecular scale, a specific microstructure of the separate 
phases results from the melt blending process; this morphology partly determines the final 
properties of the blend. Figure 3.1 gives some examples of such morphologies for the model 
system polystyrene (PS)/high density polyethylene (HDPE) [1]. 
 
 

 
 
Figure 4.1 Examples of spherical, rod-like, sheet, and co-continuous morphologies in an 

incompatible blend of PS-HDPE. 
 

At the end of the melt blending process the morphology, which is not necessarily in an 
equilibrium state, is frozen-in in the solid state. In a subsequent processing step, such as 
injection molding or film blowing, the morphology achieved may be altered as a result of the 
typical processing conditions there. Since the resulting morphology depends on the 
processing technique and conditions, the volume fractions and viscosity ratio of the polymers, 
the melt elasticity, and, most important, the time of mixing, it is of great concern to model 
                                                        
5 Based on: H.E.H. Meijer, J.M.H. Janssen, P.D. Anderson, Mixing of immiscible liquids, in Mixing and 
Compounding of Polymers: Theory and Practice; Editors: Ica Manas-Zloczower, 41-177, Hanser Publications, 
Book Chapter, ISBN 978-1569904244 (2009) 
6 and: Han E.H. Meijer, Mrityunjay K. Singh, Patrick D. Anderson, On the performance of static mixers: A 
quantitative comparison, Progr. Polym. Sci, 37, (2012) 1333 – 1349. 
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the mixing process in a principally transient approach. However, since polymer blending 
involves complex, nonisothermal, non-Newtonian, time-dependent flows, direct research on 
industrial compounding equipment generally yields compound- and machine-limited results 
that might be useful for the specific problem under investigation but are not conclusive in a 
more general sense. As a consequence, most of the fundamental research on the mixing of 
immiscible liquids has been focused on idealized systems: using single drops of Newtonian 
model liquids in well-defined flow fields at room temperature. The results of this research 
generally are represented in dimensionless form and are scaled to practical processes in the 
areas of, for example, polymer blending and food technology. 
 
In the mixing of immiscible liquids, the minor component is generally present as the dispersed 
phase (drops or filaments) in a continuous phase of the major component. An elementary 
step in the mixing process is the deformation of dispersed drops in the flow field, yielding an 
increase in the interfacial area between the two components accompanied by a decrease in 
local dimensions perpendicular to the flow direction: the striation thickness. Either the 
interfacial area or the striation thickness can be used as a measure for the quality of mixing. 
Deformation of drops is promoted by the shear stress τ exerted on the drops by the flow field 
and counteracted by the interfacial stress σ/R (with σ the interfacial tension and R the local 
radius) minimizing the surface to volume ratio, thus tending to a spherical shape. The ratio 
between these two stresses is called the capillary number Ca: 
 
 

Ca = t R /s        (4.1) 
 

 
If the capillary number exceeds a critical value Cacrit, the viscous shear stress overrules the 
interfacial stress, no stable equilibrium drop shape exists and the drop is extended and finally 
breaks up into smaller droplets. If Ca < Cacrit, the interfacial stress competes with the shear 
stress and the drop will deform only slightly in the flow field, yielding a stable drop shape. 
Taylor [3, 4] was the first theoretically and experimentally, to investigate the critical 
conditions for breakup of dispersed drops. 
 
 

 
 

Figure 4.2 Deformation of an originally spherical drop in a steady shear flow into an 
ellips.  

 
 
Taylor originally attempted to predict the viscosity of an emulsion, a liquid containing 
deformable drops of another (immiscible) liquid, via an extension of Einsteins [5] relation for 
the viscosity of a suspension, a liquid containing rigid spheres: 
 

η = η0 (1 + 2.5 φ)        (4.2) 
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with φ the volume fraction of rigid spheres and η0 the viscosity of the surrounding liquid. Via 
a calculation of the flow inside and around a dispersed liquid drop, Taylor [3] derived the 
expression: 
 

η = η0 [1 + 2.5 φ (p + 2/5)/(p + 1)]       (4.3) 
 
 
with 
 

p = ηd / ηc         (4.4) 
 
the viscosity ratio between the dispersed and the continuous (matrix) phase, which for p → ∞ 
renders Einsteins original result. Einsteins goal was not so much to initiate the dispersion 
rheology but to obtain, from viscosity measurements in a dilute solution, quantitative 
information on the radius of gyration of molecules. Similarly, Taylor did not intend to begin 
the modeling of dispersive mixing. To verify his assumption that the drop would stay almost 
spherical, he had to investigate the circumstances under which a drop would severely deform 
and break up. The results of this research, the genuine start of the modeling of dispersive 
mixing, were published in 1934 [4]. 
 
Taylor found that in simple shear flow, a dispersed drop with viscosity ratio p = 1 becomes 
unstable and breaks up if Ca > 0.5, thus Cacrit is of the order unity. Apparently, breakup occurs 
when both competitive stresses (τ and σ/R) are of the same order of magnitude. Cacrit depends 
on die type of flow, simple shear versus elongational flow, and on the viscosity ratio p, as 
demonstrated later Also, the rate of drop deformation and the time to breakup strongly 
depend on p. All microrheological processes generally occur faster for drops of low viscosity 
in a highly viscous continuous phase (p < 1) than in the opposite case (p > 1). 
 
A useful subdivision of the mixing process can be based on the value of the (local) capillary 
number, which continuously decreases during the process, as a result of the decrease of the 
typical length scale (in polymer blending roughly from 1 mm to 1 μm): 
 

1. Distributive mixing when Ca > Cacrit (large dispersed domains, passive 
interfaces); drops are extended affinely with the matrix but do not develop 
capillary waves leading to breakup, since the interfacial stress is overruled by 
the shear stress. 

2. Dispersive mixing when Ca ≅ Cacrit (locally small radii of curvature, active 
interfaces); σ/R competes with τ and causes disturbances at the interface to 
grow, leading to breakup into smaller droplets and thus to a finer dispersion. 

 
Although in reality distributive and dispersive mixing do not occur separately in a mixing 
device, this distinction is useful for a better understanding of the mixing process. Apart from 
a tendency toward finer morphologies resulting from distributive and dispersive mixing, a 
coarsening of the morphology may occur during mixing due to coalescence of the dispersed 
droplets. As is indicated later coalescence preferentially takes place at almost quiescent 
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regions of the flow, in contrast to the two mixing mechanisms described above. The sections 
that follow discuss distributive mixing, dispersive mixing, and coalescence. 
 
 

 
4.2 Distributive mixing; Ca >> Cacrit 
Some attention has been given to lamellar starting morphologies for the mixing process (see, 
e.g., [6]). These stratified structures originate from the melting process of polymers in an 
extruder, characterized by drag removal. Sheets of the dispersed phase become unstable and 
break up into threads, which then may break up into drops. Here, however, a drop in matrix 
structure, with the drop size of the same order of magnitude as the granular polymeric 
feedstock (~ 1 mm), is considered to be a typical starting morphology. This drop size might be 
considered to be an upper bound in terms of the characteristic length scale. For immiscible 
polymer melts, an order of magnitude estimate of the local capillary number yields: 
 

t = ηc  . γdot = 102 . 102 = 104 Pa    
 
and  
 

σ / R = 10-2 . 10-3 = 10 Pa 
 
thus: 
 
 Ca = ηc  . γdot . R/ σ = 103       (4.5) 
 
where τ is shear stress [Pa], ηc the viscosity of the continuous phase [Pa.s], γdot� the shear rate 
[s–1], σ the interfacial tension [N/m], and R is drop radius [m]. Note that in Eq. (4.5) the 
Newtonian constitutive equation is substituted; our knowledge of the mixing process is 
largely limited to the mixing of Newtonian liquids. From Eq. (4.5) it follows that Ca >> Cacrit, 
since Cacrit ≈ 1. Consequently, the interfacial stress (σ/R) is overruled by the deforming shear 
stress and the (millimeter sized) drops deform affinely with the matrix (i.e., distributive mixing 
with passive interfaces). Note that for miscible liquids (no interfacial tension), distributive 
mixing is the only process of interest (apart, of course, from diffusion). 
 

4.2a Linear versus exponential mixing 
Stirring during processing results in linear mixing where the interface length increases linearly 
with total shear or total deformation. A combination of stretching, folding, and reorienting 
can, however, change the efficiency of the distributive mixing process from a linear 
dependence of the total shear into an exponential dependence. The principle of this 
“stretching and folding” mechanism is depicted schematically in Figure 4.3.  
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Figure 4.3 Stretching and folding during distributive mixing; the material is folded after 

every extension equal to the initial length l0 (baker’s transformation) 
 
This transformation, resulting in the exponential way of mixing, is familiar to everybody who 
cooks. It is called the baker’s transformation, named after the way dough is mixed by 
repeatedly rolling (which is a stretching operation) and folding.  
 
In the past, when the maximum attainable temperature in ovens (ca. 1100 °C) was below the 
melting point of iron (ca. 1500 °C), iron could be separated from the ore only because the 
diffusion of carbon from the cokes in the furnace caused a depression in melting temperature. 
The result was cast iron with inferior mechanical properties. Upgrading to steel proved to be 
possible via oxidative removal of the extra carbon from the iron by forging. During forging, 
the iron is heated, hammered (which is stretching), folded, heated again, and so on. In this 
way, the striation thickness, which is the typical distance for diffusion of oxygen and carbon 
dioxide, is efficiently decreased, while the surface area is increased. That good steel required 
5000 repetitions of this baker’s transformation apparently has been known for a long time [7, 
8]. 
 

4.2b Couette flow 
Ng and Erwin [9] performed experiments using polymers to illustrate the efficiency of the 
baker’s transformation in a Couette flow. By alternating black and white strokes of the same 
polymer in the gap between two concentric rotors (Figure 4.4) and, after melting, rotating 
one of the cylinders over a total angle γtot, mixing can be visualized. Quantitatively, mixing 
efficiency can be measured and calculated with the striation thickness, the total number of 
layers or the total interfacial area A: 
 

A / A0 ≈ γtot         (4.6) 

 
 

 
 
Figure 4.4 Exponential mixing in a Couette device. From left to right we find: (a) starting 

configuration, (b) shearing, (c) stop, cool, cut, reorient, and reheat, (d)  shearing. 
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By dividing the total shear γtot in n equal intervals and reorienting the flow, once a shear of 
γtot/n has been reached, (this division can be achieved perfectly by cutting the ring into square 
pieces and rotating each individual piece over 90°) the interfacial area increases exponentially 
with shear: 
 

A / A0 ≈( γtot / n)n       (4.7) 
 
Distributive mixing can be summarized as affine deformation, with no influence of the 
interfacial tension (passive interfaces); stretching, with equivalency of shear rate and time, 
since only the total shear is important; and folding and reorienting, which yields the 
exponential mixing coefficient n. 
 

4.2c Cavity flow 
A systematic approach to the modeling of distributive mixing, valid in general three 
dimensional flows, is attributed to Ottino’s group, which published a multitude of relevant 
papers on this subject. Of special interest and great didactic value is their numerical and 
experimental work on periodic (chaotic) flows in two-dimensional geometries (see, e.g., [34, 
35]). An example is shown in Figures (4.5) and (4.6). We will analyze Ottino’s cavity flow here 
in some detail, especially because its simplicity and accessibility represent the best didactic 
tools available today, at least if we want to learn about the basics of mixing.  
 
 

 
a.                                   b. 

Figure 4.6 Comparison of (a) continuous and (b) discontinuous movement of the cavity 
walls; the total displacement of the walls is equal in both cases (from [36]) 

 

 
 
Figure 4.7 Adaptive front tracking results [38]. Comparison of (a) continuous and (b) 

discontinuous movement of the cavity walls; the total displacement of the walls 
is equal in both cases. The blue point represents size and original position of 
the stretched red blob 

 
The top and bottom wall of the cavity, a rectangular duct, can be translated independently 
and periodically. The resulting flow patterns are visualized with two fluorescent tracer drops. 
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No interfacial tension is present between the tracer drops and the continuous phase, so only 
distributive mixing is studied. In the example of Figures (4.8) and (4.9), one of the blobs (the 
red one) is stretched, folded, and transferred back to its initial position before the periodic 
movement is repeated, thus undergoing efficient mixing. The second blob (blue), however, is 
only rotated and convected, without any significant deformation. It moves inside a dead zone, 
called a regular island. The presence or absence of those important zones in general flows 
can be analyzed by different methods, the so-called dynamical tools. They include periodic 
point analyses, Poincaré sections, adaptive front tracking, and Mapping Method analyses, see 
e.g. Figure (4.10). 

 

 
 
Figure 4.8 Distributive mixing in a cavity flow; top and bottom wall are translated 

periodically (from [35]). 

 

 
 
Figure 4.9 Distributive mixing in a cavity flow; top and bottom wall are translated 

periodically. The red blob is positioned in a first order hyperbolic periodic point, 
the blue blob in a first order elliptic periodic point. We follow the first period in 
detail (T = 0 to T = 1), then we jump to period 2 and 5. 
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Figure 4.10 Poincaré sections of the cavity flow with different dimensionless wall 
displacements D. The example of top right, with D = 6.24, represents the 
experiments from Figure (4.8) and the simulations (4.9). 

 
Next we apply mapping to study different flow protocols, see Figure (4.11). We compare the 
simple, top only movement flow (protocol A: TTTTTTTTTTTTTTTT), which yields poor closed 
streamlines and linear, bad mixing, with chaotic advection flows such as (protocol B: 
TBTBTBTBTBTBTBTB), the top-bottom protocol with crossing streamlines and exponential 
mixing, the symmetry breaking protocol (protocol D: TBBTBTTBBTTBTBBT), and the reverse 
protocol (protocol E: TB-T-BTB-T-BTB-T-BTB-T-B). Here TB stands for clock wise motion of top 
and bottom walls, respectively, and –T-B stands for counter clock wise motion of the walls.  

 

 
 
Figure 4.11 Comparing protocols and combinations of # steps and wall displacements D. 
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In all computations, the total wall displacement is kept constant at 128. Different numbers of 
steps are taken for different wall displacements (64 steps of D = 2; 32 steps of D = 4 and 16 
steps of D = 8). Apparently, larger wall displacements provide better mixing in all protocols 
and the symmetry breaking protocol (D) together with the inverse protocol (E) seems superior 
to the standard TB protocol. This is investigated in more detail. 
 
Mixing quality is expressed in the area-averaged intensity of segregation I. It changes from 
the value 1: no mixing to 0: perfect mixing. From the Figure (4.11) and values of I in that figure, 
it is clear that neither a large number of small steps, with little stretching in every step, nor a 
few steps with large stretching, gives optimal results. Differences between the protocols are 
found, but are non conclusive.  
 
Therefore, an even more detailed analysis is needed and was performed, using 100.000 of 
computations with little steps in-between and the results are shown in Figure (4.12) for the 
standard TBTB protocol A. A hyperbolic line in the figure represents mixing with equal energy 
input. The spiky appearance of the results illustrates the appearance and disappearance of 
islands, depending on the details of the operation expressed in different values of wall 
displacement D, as demonstrated in the snap shots at the border of the figure.  
 

 

 
 
Figure 4.11 Final optimization of how to operate the lid-driven cavity using the standard 

protocol A (TBTBTBTBTBTBTB). Plotted is the area-averaged intensity of 
segregation I, with values from 1 (black, no mixing) to 0 (white, perfect mixing) 
for different wall displacements D (vertical axis) and number of wall 
movements N (horizontal axis) [18]. 
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4.3  Static mixers 
A perfect illustration of the application of the efficient baker’s transformation in practical 
mixing is realized in almost all well-designed static mixers. The working principle of a static 
mixer is based on the stretching and folding mechanism illustrated in Figure (4.5). Three major 
steps can be distinguished: stretching, cutting, and stacking. The last two steps have the same 
function as the folding in Figure (4.3). 
 
 

 

 
 
Figure 4.5 Stretching, cutting, stacking. 
 
4.3a  Kenics mixer 
The Kenics static mixer, (Figure (4.6), is industrially often used, probably because its adds 
function (mixing) to connecting tubes that are present anyway in technical processes to 
transport fluids. The elements inside the tube resemble platelets twisted 180°, like butterfly 
ties, with each successive element, again, rotated over 90°.  
 

 

 
 
Figure 4.6 Kenics static mixer with alternating L-R, left-right turning elements 
 
The working principle is shown in Figures (4.7) and (4.8). Stretching of an interface between 
a white and a black fluid is caused by the rotation of the blades that make a secondary flow 
increase the cross-sectional interface typically from 0.5D to 1D, with D the tube diameter. 
Cutting and stacking is cleverly realized by placing the next element under 90°. 
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Figure 4.7 Mixing inside the Kenics static mixer is based on stretching, cutting, stacking. 

 
 

 
 
Figure 4.8 Interface creation inside the Kenics static mixer in the first element (a – e),  in 

the second element (f - g) and after 4 elements (h). 
 
If the platelets are thought to be straight, while the relative motion between wall and 
platelets, during the passage of the flow, is kept the same by adding an imaginary rotation of 
the barrel wall over the very same 180°, we arrive at the so-called partitioned pipe mixer [21], 
with roughly the same performance, although clear differences remain. 

 
 
4.3b SMX mixer 
A complex but, given its efficiency, frequently used static mixers is the SMX mixer (Static Mixer 
based on cross X plates), as at present produced by Sulzer. The interior parts look like crossing 
screens made out of parallel strips forming distinct elements that are consistently rotated, 
with alteration, over 90°, see Figure (4.9). Some years ago, Sulzer produced an illustrative 
movie on its working principle by allowing a Lagrangian view of the flow inside. They fed two 
streams of colored white and red epoxies in the mixer, let the material react and consequently 
sliced through the resulting system, allowing to create a movie where the observer travels 
with the material through the mixer. Figure (4.10) shows some snapshots of the movie. 
Basically, the working principle can be explained as follows: If two horizontally crossed forks 
(or alternatively crossed fingers of your hands) are positioned on both sides of a vertical 
interface between a white and a red fluid, a line with length D of the channel diameter, and 
subsequently moved perpendicular to that interface to the other side of the channel, the 
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interface is distorted and stretched by folding between the teeth of the forks (or your fingers). 
A serpentine shaped interface line results with a length of 8D if forks with 4 teeth (or 4 fingers 
– thumbs are too small) are used. Now it becomes clear why the next element should be 
rotated over 90°. The teeth of the forks (or the fingers) reached the opposite side of the cross 
section of the channel. No more stretching of the interface is possible. The 90° rotation 
reorients the flow direction, again to be perpendicular to the – now 8 horizontal – interfaces 
formed in the first element. The crossing forks now fold 8D interfaces together to become 8 
× 8D in length after reaching the bottom and top side of the channel, respectively. To 
conclude, after n repetition with n elements, a total of 8n layers result.  
 

 

 
 
Figure 4.9 Sulzer SMX static mixer. 

 

 
 
Figure 4.9 Interface creation inside a SMX static mixer. 
 
4.3c  Optimizing mixers to compactness or pressure drop 
All static mixers use the same working principle of the Kenics and the SMX mixers. Using the 
Mapping Method to compute the flow inside, and the interface stretching and positioning in 
all cross sections, these mixers can be understood and optimized. Figure 4.10 shows examples 
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of different geometries. Interestingly, for the complex SMX mixers a whole series of 
geometries could be established that is optimum with respect to interface stretching. If we 
characterize an SMX by three numbers, (n, Np, Nx) = (number of crosses over the height, 
number of parallel bars over the length, number of crossing bars over the width of an 
element) this optimum series reads:  
 

SMX(n) (n, Np, Nx) = (2, 2n-1, 3n)      (4.8) 
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Figure 4.9  Motionless mixers: (a) Kenics (right twist – left twist; angle of blade twist 180 
0), (b) Ross LPD (right rotation – left rotation; crossing angle q = 900), (c) 
standard Sulzer SMX (n, Np, Nx) = (number of crosses over the height, number 
of parallel bars over the length, number of crossing bars over the width of an 
element) = (2, 3, 8), and two examples of the new series of the most efficient 
SMX(n) (n, Np, Nx) = (2, 2n-1, 3n), here in rectangular version of (d) the ‘working 
horse’ (n = 1), and of (e) the compact n = 3.  

 
The mixing profiles along the length of most common statc mixers, Kenics, Ross, and Sulzer, 
and their modifications, are computed using the mapping method and illustrated in Figure 
(4.10). 
 

 
 
Figure 4.10  Mixing profiles in the cross sections of subsequent elements (1, 2,….8):  C0 – 

C8, in different motionless mixers with their modifications. 
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Based on these computed cross sections, the mixing quality is determined. It is reflected in 
the so-called volume averaged ‘Intensity of Segregation’, which is a dimensionless number I 
that varies between 1 (completely un-mixed) to 0 (completely mixed). Usually its logarithm is 
plotted, log I, since good mixing is exponential and moreover in order to enhance the visibility 
of the information at the most relevant level, close to zero. Figure (4.11a) plots mixing quality 
versus the length of the mixer, Figure (4.11b) plots quality versus pressure drop. From Figure 
(4.11a) it is clear the dense SMX mixers, winner SMX (4, 7, 12), are very compact.  But use a 
lot of pressure, see Figure (4.11b). The Kenics mixer, and the low pressure drop versions LPD 
and LLPD, use little pressure only, Figure (4.11b) but are very long, Figure (4.11a). Most 
interesting, however, is that a special version of an optimized SMX mixer, the SMX (1, 1, 4, 
with q = 1350), gives a slightly lower pressure drop than the optimized Kenics RL-140. This 
makes the static mixers based on cross plates X the most efficient ones, both with respect to 
compactness SMX (4, 7, 12), as in pressure looses SMX (1, 1, 4, with q = 1350). 
 

 
 

 
 
Figure 4.11a  Mixing quality in terms of the logarithm of the volume averaged intensity of 

segregation, log I, versus the (dimensionless) length of the mixer. 
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Figure 4.11b  Mixing quality in terms of the logarithm of the volume averaged intensity of 

segregation, log I, versus pressure drop over the mixer. 
 
 
4.4 Dynamic mixers 
As the discussion of static mixers has demonstrated, the principles of efficient distributive 
mixing can be realized in practice. In operating static mixers, a pressure flow is responsible 
for the throughput. Consequently, a pressure-generating device is needed. Mixing can also 
be directly improved in these pumps, typically extruders, because of their viscosity 
independent working principle. This is the area of the dynamic mixers. Although less efficient 
than static mixers, dynamic mixers offer a continuous flow field in which stretching, folding, 
and reorienting can be realized. An illustrative example is the closely intermeshing and, 
consequently, self-wiping co-rotating twin screw extruder, which induces folds and 
reorientations with respect to the streamlines during takeover of the material from one screw 
to the other, (Figure (4.12). 

 

 
 
Figure 4.12 Stretching, folding and reorienting during whipening of one screw by the other,  

in co-rotating twin-screw extruders. 

 
As stated in Chapter 1, modelling of co-rotating twin screw extruders is frustrated by the 
complex 3D geometries involved, but modern computational power has overcome this 
problem, see for example Figure (4.13).  
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Figure 4.13 An recent example (2015) of the detailed geometry for advanced analysis, 
from Andres Eitzlmayr et al. from Graz University of Technology; left 
geometry, right mesh. 

 
The outcomes of these, usually only local, analyses are pump characteristics of the different 
screw parts. How to use them to obtain information about the filled and partially filled 
sections of the screw has been explained in Chapter 1. Sometimes even a measure for mixing 
is tried. However, as we have concluded above, mixing can only be quantified if a measure 
like the area (in 2D) or volume (in 3D) averaged intensity of segregation is computed. Analyses 
like these are underway, see in Figure (4.14) an example, and our PhD student and later 
Postdoc Arash Fard is at night and in the weekends still working to finish the solution of the 
problem. We expect to, soon, be able to report on this. 
 

 
 
Figure 4.14 Arash Frad: Advanced analysis to determine mixing in a quantitative way in 

co-rotating twin-screw extruders. Shown is some results on particle tracking. 
 
 
4.5 Dispersive mixing 
 
4.5a Disintegration of threads into a row of droplets 
When the original millimeter-sized liquid drops are extended into long slender filaments, as 
a result of the affine deformation, local radii are decreased such that the interfacial tension 
starts playing a role ( active interfaces). In polymer melts, the shear stress and the interfacial 
stress become of the same order of magnitude if the radius R of the threads is decreased to 
1 μm. 
 
 

t = ηc  . γdot = 102 . 102 = 104 Pa    
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and  
 

σ / R = 10-2 . 10-6 = 104 Pa 
 
thus: 
 
 Ca = ηc  . γdot . R/ σ = 1        (4.9) 
 
The interfacial tension tends to minimize the interface between the two phases, minimizing 
as well the surface-to-volume ratio. As a consequence, small disturbances present at the 
interface of the liquid cylinder grow and finally result in the disintegration of the thread into 
a line of drops. These so-called Rayleigh disturbances can be investigated experimentally 
every morning in the shower and are illustrated for a molten polyamide-6 (PA-6) filament, in 
an otherwise quiescent melt of PS, in Figure (4.15) [46].  
 
 

 
 
Figure 4.14 Thread breaking into drops caused by the growth of Rayleigh distortions that 

are driven by the interfacial tension that tries to minimize the surface-to-
volume ratio of the dispersed phase.  

 
A major difference between the two processes indicated is the value of the Reynolds number. 
In the shower, the interfacial stress mainly compares to inertia (We1: see [47]), while in 
molten polymer blends it compares to viscous shear stresses (Ca). Since in Figure (4.15) the 
viscosities are high and the thread is relatively thick, implying a small driving force (σ/R), the 
time scale of the experiment is typically minutes versus seconds in the case of breakup of free 
water jets. Between the drops, small satellite droplets are formed in the last stage of the 
disintegration process. This is a result of fast growth of Rayleigh disturbances on the fine 
filaments (σ/R large) formed between adjacent drops. Tjahjadi et al. [48] numerically 
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investigated the formation of satellite and subsatellite droplets and found that the smaller 
the viscosity ratio p between thread and matrix, the more satellite droplets are formed. 
 
Figure (4.15), from Pierre Elemans, demonstrates the beautiful coordinated breakup of 
threads that are in proximity. Figure (4.16) demonstrates computed break-up, and Figure 
(4.17a and 4.17b) show computed break up during free retraction of an extended filament, 
without  (4.17a) and with (4.17b) surfactant present. 

 

 
 
Figure 4.15 Threads in proximity break up in a coordinated way: out-of-phase breakup of 

70 μm PA-6 threads in a PS matrix at 230 °C; typical time scale of the 
experiments is 5 minutes [79].  

 
 

 
 
Figure 4.16 Computed thread break up. 
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   a. 

 
   b. 

 
Figure 4.17 Thread break up during free contraction of an extended filament, without (a) 

and with (b) the presence of surfactant. 
 

 

 
 
Figure 4.17 Threads leaving the extruder exit intact break up into a line of droplets once 

given sufficient time prior to cooling outside the extruder. 
 
4.5b Break up of drops 
Most work on dispersive mixing has been dedicated to the deformation and break up of a 
single drop in a steady uniform shear or extensional flow. It’s relevance for practice is, 
however, somewhat questionable, and conclusions should be considered with some care. 
This is shown in Figure (4.18) that poses the question whether (left) stepwise drop breakup, 
increasing the shear rate stepwise until Camax is reached, does compare in terms of the 
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resulting droplet size distribution with (right) directly imposing Camax to form droplets via the 
break up of a thread.  

 
 
Figure 4.18 Schematic representation of two dispersion mechanisms: left, the stepwise 

equilibrium mechanism of repeated breakup at Cacrit; right, the transient 
mechanism of thread break-up during stretching. Both processes end at the 
same maximum shear rate, thus the same Camax. 

 
The drop deformation and break up mechanism, that forms the basis of all classical studies 
on dispersive mixing, is shown in Figure (4.19). The computed process in Figure (4.20). 
 

 
 

Figure 4.19 Break-up of a drop (~ 1 mm) in simple shear flow just above the critical capillary 
number.  

 

 
 
Figure 4.20 As Figure (4.19); an example of computed results. 
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Following the protocol of Figures (4.19) and (4.20), this gradually increasing the shear rate 
until, at Ca = Cacrit, the drop breaks, Grace, at that time working at DuPont, and Taylor, 
performed a multitude of experiments using Newtonian fluids with different viscosity ratio 
between dispersed and continuous phase:  
 

p = hd / hc        (4.10) 
 
The results are summarized in Figure (4.21) where the critical capillary number Cacrit at which 
the drops breaks, is plotted as a function of the viscosity ratio p. 
 

 
 
Figure 4.21 Critical capillary number Cacrit versus viscosity ratio p (= ηd/ηc), in simple shear 

and in elongational flow (after [62]). 
 
In shear, very low viscosities of the dispersed drop phase (p = 10-5) require a high shear rate 
to break (Cacrit = 100). The low viscous drops are difficult to ‘grip’. Increasing the viscosity 
gradually lowers the shear rate required until the minimum of Cacrit = 1 is reached at p = 1. At 
that point, the deforming shear stress t and the spherical shape retaining surface tension 
force s/R, are equal and balance. Upon further increasing the viscosity of the drops, the 
critical capillary number sharply start increasing again until at p > 4 no break up occurs, Cacrit 
= µ). The high viscous drops rotate away from the deformation and just tumble. Calculations 
confirm these experiments, see Figure (4.22). 

 

 
 

Figure 4.22 Deformation and breakup of drops at Cacrit for all different viscosity ratios p 
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(from [90]). 

4.5c  Drops or threads 
The practical conclusion of all this fundamental work on dispersive mixing was that, in order 
to obtain the smallest possible size of the dispersed phase, as expressed in the drop radius R, 
mixing at equal viscosities p = 1, is required. Since Ca = ηc  . γdot . R/ σ for a given blend system, 
characterized by the surface tension σ/R, and a give mixing process, characterized by the 
shear rate γdot, the smallest Ca gives the smallest R. If mixing of drops with very high viscosities 
is required, only elongational flows can be used, see Figure (4.21). The reason is that 
elongational flows are irrotational, such that drops can not rotate away from the 
deformation. A big practical disadvantage, however, is that elongational flows are difficult to 
sustain in technical processes.  
 
Therefore, it is more useful to investigate what happens to drops, once partly stretched in a 
temporary elongational flow, when it re-enters a shear flow. This is demonstrated in Figure 
(4.23). It shows the deformation rate of the drops versus that of the continuous matrix phase 
as a function of the dimensionless length L of the non-spherical drop. If εdot, d / εdot, m is 
positive, the drop deforms, if it is zero, the drop stay stationary with the given deformation, 
if it is negative, the drops retract. Spherical drops are those with L = 1. All experiments by 
Grace and Taylor start in the left top of the plot, at L = 1 and εdot, d / εdot, m = 1. The viscosity 
ratio p = 1, such that Cacrit = 1.  
 
Drops that are sheared at Ca < Cacrit deform to reach a stationary slightly deformed state. 
Deformation at Cacrit just leads to break up, while at Ca > Cacrit the drops keep deforming, 
finally with the matrix speed, into threads. Interesting is to see what happens to non-spherical 
drops, such as those just exiting a temporary elongational flow over a screw or kneading disc 
flight. Depending on the shear rate as expressed in the different Cacrit numbers, ¼, ½, drops 
below a certain length retract, while thos with sufficient length start deforming into long 
threads. Figure (4.23) summarizes all results, while Figure (4.24) gives the critical capillary 
number for non spherical drops. We conclude that for sufficiently elongated drops, L = 20, 
the critical capillary number is 1000 times smaller than for spherical drops. 
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Figure 4.23 Deformation of non-spherical drops in simple shear flow at different values of 
Ca/Cacrit. Drop stretching rate εdot, d / εdot, m as a function of the dimensionless 
droplet length L at different values of the capillary number. Viscosity ratio p = 
1 [94]. 

 
 

 
 
Figure 4.24 Critical capillary number Cacrit as a function of the viscosity ratio p for drops 

with a non- spherical initial shape, characterized by length L, [94]. 

 
Finally, we investigate the even more simple situation of the deformation of a high viscosity 
drop in a non-homogeneous shear flow. Non-homogeneity consist of a constant, but 
temporary rotating, shear flow. Rotation stops after some time, See Figure (4.25). 

 

 
 

 
 
Figure 4.25 Drop in matrix with viscosity ratio p = ηd/ηc = 10 in temporary rotating simple 

shear flow. The shear flow rotates with the drop in the first 9 frames and stays 
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constant accordingly during the next 9 frames. Despite the large p-value the 
drop stretches!  

It is clear that the high viscous drop, p = 10, that according to all classical dispersive mixing 
research could not deform and break in simple shear flow, indeed does deform and stretches 
out to infinite length if the shear flow gets ‘grip’ on the drop, in the initial stages just by 
rotating with the drop such that the latter can not escape from the deformation. These are 
an interesting and useful results that a.o. helps explaining why an automotive blend like Noryl 
GTX, with a high viscous dispersed phase (PPE) in a low viscous matrix (PA) could be produced 
on co-rotating twin-screw extruders by, at that time, GE-Plastics in Bergen op Zoom.   

 
4.5d  Coalescence of drops 
Up to this point, the dispersion of isolated drops and threads was discussed. Most practical 
applications, however, involve blends that are sufficiently concentrated to exhibit 
coalescence of the drops formed. Elmendorp [96] in 1986 showed experimentally that already 
at a volume fraction of a few percent dispersed phase, the morphology is significantly 
coarsened by coalescence. At high volume fractions (around 50%, see Section 3.6.3), phase 
inversion may occur. In the modeling of coalescence, two aspects have to be considered:  
 

• do drops collide within a given process time and   
• will a collision be successful, i.e., does the film between the drops drain sufficiently 

during the available interaction time.   
 

Figure Figure (4.26)  shows two colliding drops in simple shear flow. The ‘external flow’ and 
the volume fraction dispersed phase govern the collision frequency. In addition, the external 
flow is responsible for the contact force and the interaction time of the collision, the boundary 
conditions for the film drainage or ‘internal flow’.   
 

 

 
 
Figure 4.26 Collision of two deformable drops in simple shear flow, with drainage of the 

film in between. 

The drainage process is controlled by the mobility of the interfaces between drop and matrix. 
We distinguish immobile, partially mobile and fully mobile interfaces, as e.g. controlled by the 
presence of surfactants, see Figure (2.27). All local processes have been successfully 
modelled, resulting in the chance on collision, on successful drainage, and thus combined on 
successful coalescence, see Figure (4.28). Combining binary break up models with successful 
coalescence models finally give an estimate of the size of the resulting drop size population 
as a function of the relative flow strength, see Figure (4.29). 
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Figure 4.27 Internal flow field of film drainage between colliding deformable drops with 

immobile, partially mobile, and fully mobile interfaces.  

 

 
 

Figure 4.28 Collision-, drainage-, and overall coalescence probability as a function of radius 
R and flow parameter ηc γdot / σ . Conditions: simple shear flow, tproc = 50 s, ηd 
= ηc = 1 Pa s, σ = 10–2 N/m, hcrit = 10–9 m, φ = 0.1, drainage with partially mobile 
interfaces.  

 
 

 
 
Figure 4.29 Comparison of drop sizes resulting from stepwise equilibrium breakup and 

coalescence after long process time in simple shear  
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4.6  A simplified dynamic model 
In the preceding sections, the most relevant stages of the blending process of immiscible 
liquids have been discussed: affine stretching of dispersed drops including reorientations and 
folds, disintegration of the formed liquid threads, further drop deformation and breakup, and 
coalescence of small drops into larger ones. The resulting criteria for Newtonian liquids are 
quite complete and can be combined into an overall mixing model that describes the 
development of the morphology during the blending process (see Janssen and Meijer [114]). 
A schematic 2-zone model has been chosen that has an analogy with the mixing model for 
carbon black in rubber as proposed by Manas-Zloczower et al. [111,112]. The 2-zone model 
is depicted in Figure (4.30). The material passes cycles through alternating ‘strong’ and ‘weak’ 
zones. A diversity of practical mixing devices can be modeled by variation of the flow 
conditions in the zones (residence times and deformation rates). The 2-zone model is directly 
applicable to stirred vessels (with the impeller region the strong and the macro circulation 
the weak zone), but it can also be applied to completely different types of mixers. Here, the 
model is treated mainly in view of polymer blending in melt extruders.  
 
 

 
 
Figure 4.30 Principle of the 2-zone mixing model: material passes cycles through 

alternating strong and weak flow zone.  
 
The strong zone represents regions of a mixer where high deformation rates are present. It is 
modeled by an elongational flow with high elongation rate εdot and a short residence time t. 
In this zone, exponential stretching of dispersed drops and threads takes place. During 
stretching, it is checked if the threads formed are thin enough to disintegrate in the flow. 
Although the strong zone is modeled by elongational flow, simulating, e.g., the entrance of a 
narrow gap before a kneading disc, may also represent a sequence of stretching and folding 
in a simple shear dominated region. In both cases, stretching proceeds exponentially.  
 
The weak zone represents quiescent regions of the mixer and is modeled by simple shear; the 
shear rate γdot is small, the residence time t large. Threads entering this zone may break up at 
(almost) rest, if the residence time suffices. Drops coalesce, if the remaining residence time 
allows for collisions with successful film drainage. Repeated coalescence may take place 
during each passage of the weak zone, if there is time available. In order to get a distribution 
of drop sizes, the residence time in the weak zone is distributed as a cascade of n ideal mixers. 
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4.6a Transient mixing process 
Next we focus on the numerical simulation of the 2-zone model. Since the number of drops 
increases enormously (1 mm sized drop yields 109 μm sized drops), drop ‘families’ are 
considered rather than individual drops. Each family contains a number of identical drops/ 
threads that are characterized by a single radius R, an aspect ratio L/B (with B = 2 R), and a 
cumulative residence time. Within a family, no time distribution is applied so that a number 
of different drop families has to be used (instead of 1) in order to generate a distribution of 
drop sizes. This distribution is initiated artificially to have a certain range from the start on. 
Further distribution is achieved due to the residence time in the weak zone. All drop families 
start in the strong zone, pass through a specified number of cycles, and finally leave from the 
weak zone. Passing each zone, subroutines check for each drop family whether or not the 
current size and flow conditions give rise to stretching, breakup, or coalescence. A schematic 
overview of the model is given in Figure (4.31). An illustration of the dynamics of the 
dispersive mixing process is given in Figure (4.32). 
 
 

 
 
Figure 4.31 Structure development during flow in immiscible liquids; scheme used to 

compute the transient stress development [130].  
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Figure 4.32 Transient structure developing during start-up flow using DIM with bi-periodic 

Lees Edwards boundary conditions [146].  
 
 
 
 
As an example we consider melt blending of polymers in an extruder. The simulation is based 
on analyses for Newtonian liquids. The relevant material parameters are chosen as follows: 
ηd  =  ηc  = 100 [Pa.s], σ = 5.10–3 [N/m], α0 = 10–9 [m], and volume fraction of the dispersed 
phase is φ = 0.2. The strong zone is modeled by εdot = 30 s−1 and t = 0.1 s (yielding L/B = e3/e–

3/2 = 90 upon affine stretching of a sphere); in the weak zone γdot = 3 s−1 and the residence 
time distribution resembles a cascade of 2 ideal mixers with a total mean residence time t = 
10 [s]. A population of 100 drop families is initiated with diameters around 1 [mm].  
 
Figure (4.32) shows the evolution of the drop size distribution as the population passes cycles 
through alternating strong and weak zones. During the first 3 cycles of alternating strong and 
weak zones, all drops are stretched affinely in the strong zone: threads of approx. 10 μm 
thickness are formed. This is too thick to break up either during stretching or at rest in the 
weak zone (given the residence time); so, nothing happens in the weak zone. The extremely 
large aspect ratios (L/B) represent packages of folded threads. During the 4th cycle, after 
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further stretching in the strong zone, some of the threads break up into droplets (L/B = 1) in 
the weak zone. The breakup time required at rest has decreased with the radius and has now 
reached the mean residence time in the weak zone.  In the 5th cycle, the drops and remaining 
threads are stretched again. All threads formed are thin enough to disintegrate during the 
residence time available in the weak zone. At this point, submicron drops appear that may 
easily coalesce: the lower limit of the drop size is reached. After 6 cycles, a dynamic steady 
state is reached: too small drops coalesce (repeatedly); too large ones stretch and break 
again. 
 
 

 
 
Figure 4.33 Morphology development in the 2-zone mixing model with: ηd = ηc = 100 Pa 
s, σ = 5.10–3 N/m, α0 = 10–9 m, and φ = 0.2; strong zone: ε = 30 s−1 and t = 0.1 s; weak zone: 
γ = 3 s−1 and t = 10 s. Note that after 4 cycles two distributions with different L/B apply. 
 

 
4.6b Optimization of viscosity ratio p 
Figure (4.34) shows the steady state drop sizes (after 10 cycles) for different viscosity ratios p 
and the residence time distribution that is characteristic for all three cases. The drop size 
distribution for p = 1 corresponds to Figure (4.33) and confirms that the result after 6 cycles 
is indeed the steady state. Keeping ηc  constant, a larger ηd  (p = 100) promotes finer dispersion 
due to retardation of both thread breakup (allowing for further stretching) and coalescence 
(eventually switching to immobile interfaces). The dispersion route is mainly the one step 
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breakup of highly extended threads. Upon decreasing ηd  (p = 0.01), threads break up more 
quickly, implying a stepwise stretching and breakup route, this results in coarser 
morphologies. In addition, the smaller value of ηd  favors coalescence (eventually switching 
to fully mobile interfaces). Systems with higher viscosities favor a thread-like dispersion route 
(larger time required for thread breakup) with suppression of coalescence.  
 
A similar effect of the viscosity ratio on the dispersion route and the drop size was reported 
by Tjahjadi and Ottino [55] and Muzzio et al. [117]; in addition, they found a broader drop 
size distribution upon increasing p, which is probably due to their omission of coalescence.  In 
general, for a given set of processing conditions, a lower level of both viscosities yields a 
coarser morphology, while highly viscous systems can be dispersed finer.  
 
As already mentioned in Section 4.5c, the commercial blend Noryl GTX (General Electric 
Plastics, now Sabic International) is a practical example where a large viscosity ratio p indeed 
leads to a fine dispersion. Essentially, a highly viscous polyphenylene ether melt is dispersed 
in a much lower viscous polyamide continuous phase (p = 20). Just looking at the critical 
capillary number for drop breakup suggests that a fine dispersion cannot be obtained, 
because the viscosity ratio p is far beyond 1. However, taking into account all mechanisms 
such as in the 2-zone model, it becomes clear that this blend can easily be dispersed to a 
length scale of 10–7 m, which is reality. It should be noted that this commercial blend, of 
course, contains many additives among which a rubbery third phase and compatibilizers.  
 
 

 
 
Figure 4.34 Left: Steady state morphology from the 2-zone mixing model with: ηc = 100 Pa 

s, and ηd = 104, 102, or 1 Pa s (p = ηd/ηc = 102, 1 and 10–2); other conditions 
are the same as in Fig. 3.124. Right: Residence time distribution characteristic 
for all 3 cases.  

 

 
 
4.6c Optimization of mixer geometry 
The 2-zone model lends itself for comparing the influence of processing conditions. Increasing 
the strain (εdot . t) applied in the strong zone yields thinner threads within a single passage. In 
the extreme, thread breakup during stretching results in drop sizes. In most cases, however, 
the final drop size strongly depends on the occurrence of coalescence. In the weak zone, a 
longer residence time favors thread breakup at rest and thus implies a stepwise breakup 
route. Whether coalescence is also favored by a longer residence time in the weak zone 
depends on the shear rate: not too small to be sure of collisions and not too large too assure 
successful film drainage. The volume fraction φ affects the model both via the enlarged 
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effective matrix viscosity and the collision frequency for coalescence: generally, a larger φ 
gives a coarser morphology. Moreover, in reality a larger φ generates a higher level of initial 
disturbances α0 due to the pushing of neighboring drops and threads. This accelerates thread 
breakup and makes the dispersion route more stepwise, resulting in a coarser morphology.  
A nice example of varying the processing conditions is the optimization of the gap height δ 
between kneading flight and barrel wall in an extruder. The converging flow region at the 
entrance of the gap can be made more effective for the stretching of drops and threads by 
decreasing the gap width, causing a larger strain (rate)). However, if the gap becomes nar- 
rower, less material actually passes through, while more and more material avoids the gap. 
The extreme cases are 
  

• a gap height equal to zero, δ/H = 0 so that ε = ∞ , but implying that no material can 
pass and   

• a gap width equal to the channel depth (δ/H = 1, or no flight at all) so that all 
material will pass, however, with ε = 0 .   

	
Both cases correspond to a sequence of weak zones only, which is bad for the purpose of 
stretching drops and threads. Somewhere in between the extremes, there is an optimal gap 
width δ/H such that a certain fraction of the material indeed passes through, while the value 
of ε is still considerable. In Figure (4.35) such an optimization is illustrated, based on the two-
zone mixing model. The resulting mean drop size is calculated as a function of δ/H.  
 
 
The points in Figure (4.35) represent the mean drop diameters resulting from the simulations; 
the curve is a fit.  

For very narrow gaps (regime I), the stretching rate is large (εdot = 44 [s-1]), but only a few 
cycles are performed within the residence time given (N = 3). The dispersion route contains a 
few large stretching operations followed by final breakup.  

In regime II, more cycles are included, while εdot is still substantial (e.g., in the reference case 
indicated by the arrow, N = 6 and εdot = 30 [s-1]) The dispersion route includes stretching, 
breakup, and coalescence.  

In regime III, the value of εdot becomes quite small, but the number of cycles is large enough 
to obtain a steady state morphology.  

In regime IV, although N is large (N = 20), the strain per passage is so small that it takes this 
many cycles to thin the stretching threads down to the micrometer range. At the same time, 
the residence in the weak zone becomes so short (t = 3 [s] ) that only very thin threads (R < 1 
μm) break up. If, in the simulation results underlying Figure (4.35), threads result after the 
last cycle, they are broken artificially to obtain drops, thus mixing ends with a long stay in a 
weak zone in all cases. The presence of an optimum gap height δ/H of about 0.25 is evident. 
For large values of δ/H, the simulations are somewhat questionable, since some basic 
assumptions no longer hold. In particular, the strong zone becomes weaker and loses its 
character. Irrespective of the exact values, the main message from this exercise is that “worn” 
extruder screws or kneading wings might be superior to new (more closely fitting) ones, as 
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already pointed out by Manas Zloczower et al. [111]. Moreover, this result suggests that in 
the scaling up of a compounder, the gap should be scaled accordingly in order to keep δ/H 
optimal, instead of minimizing its value.  

 

 
 
Figure 4.35 Mean drop size as a function of the gap height using a two-zone model with 

the parameters of Fig. 3.125. Symbols give the simulation results; the line is a 
fit. The arrow indicates the reference case, i.e., conditions as in Fig. 5.3 after 6 
cycles.  

 
The 2-zone model is relatively simple but clearly illustrates the dynamics and interaction of 
the relevant mechanisms. An important conclusion after many simulations is that the final 
drop size cannot be predicted just by the critical capillary number for drop breakup under 
quasi-equilibrium conditions. The transient character of the mechanisms (including 
coalescence) has to be taken into account to predict the typical trends observed in practice.  
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5. List of symbols 

 
symbol  dimension description 
 
a    [-]    ‘drossel’ ratio; ratio pressure to drag flow 
B  [m]     channel width 
B [-]    B number; ratio heat dissipation to radial heat transfer 
Br [-]    Brinkman number; ratio heat dissipation to conduction 
c  [J/kg0C]   heat capacity  
D [m]    extruder diameter 
Dis [J/sm3]    heat dissipation  
E  [W] = [J/s] = [Nm/s]  energy 
Esp [N/m2] = [J/m3]  specific energy 
f [-]    degree of fill 
Gz [-]    Graetz number; ratio heat convection to conduction 
H [m]    channel height 
h [m]    die/resistance height 
k  [m2] in 2D; [m3] in 3D  reciprocal die resistance coefficient 
L [m]    channel length 
Lax [m]    axial extruder length 
Lf [m]    completely filled screw length 
La [-]    local length screw part a 

Lb [-]    local length screw part b 

Lc [-]    local length screw part c 
la [-]    relative local length screw part a 

lb [-]    relative local length screw part b 

lc [-]    relative local length screw part c 
l [m]    die/resistance length 
N [rpm]    extruder screw rotational speed in rounds per minute 
P  [Pa = N/m2]   pressure 
P [-]    P number; ratio heat convection to radial heat transfer 
DP [Pa]    pressure difference 
dP/dx [Pa/m] = [N/m3]  pressure gradient  
Q [m2/s] in 2D; [m3/s] in 3D throughput 
Qd [m3/s]    drag flow in 3D 

Qp [m3/s]    pressure flow in 3D 
q” [J/sm2]    heat flux density  
T  [0C]    temperature  
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T * [-]    dimensionless temperature (T/(T1-T0)) 
T0  [0C]    lower wall temperature  
T1  [0C]    upper wall temperature 
To [Nm]    torque   
u   [m/s]    velocity  
V [m/s]    wall velocity 
Vf  [m3]     completely filled screw volume 
w  [1/m2] in 2D; [1/m3] in 3D die resistance coefficient 
W [m]    extruder channel width 
x [m]    x-coordinate 
x* [-]    dimensionless x-coordinate (x/L) 
y [m]    y-coordinate 
y* [-]    dimensionless y-coordinate (y/H) 
z [m]    z-coordinate 
 
 
h [-]    pump efficiency  
l  [J/sm0C]   heat conductivity coefficient  
µ [Pa.s]    viscosity 
r  [kg/m3]   density  
t  [Pa] = [N/m2]   shear stress 
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